To: Jay Lyman, DEA
From: Connie Kratovil, PB
Date: October 12, 2001
Subject: Introduction of 1-5 Trade Corridor Studies related to the I-205 Glenn Jackson Bridge Modification Technical Memo's to carry Light Rail

As part of the I-5 Trade Corridor Study, specific studies were undertaken to examine the feasibility of accommodating LRT over the Columbia River within the I-205 corridor. Two technical memos were prepared for this study, and attached. The first, " $\mathrm{I}-5$. Trade Corridor Study Phase II, Analysis of Glenn Jackson Bridge Constraints on LRT" evaluated past reports/studies, and developed various scenarios of how to accommodate LRT on the Existing Glenn Jackson Bridge. The second technical memo, "Feasibility of Widening Existing Glemn Jackson Bridge Superstructure" developed an un-engineered concept of how to do the minimal widening possible to the Glenn Jackson Bridge to accommodate LRT and keep four General Purpose lanes with 10 -foot inside and outside shoulders.

Construction costs estimates were then developed for three Scenarios of accommodating LRT along the Glenn Jackson Bridge or within the I-205 corridor.

- Scenario 1 (depicted from the past studies (ABAM Engineering Report to RTC, 1980))
n Scenario 2B (Minimal Widening Option, discussed in the Appendix, Section I, and a more indepth evaluation in the Appendix, Section II); and
- Scenario 3 (Independent LRT Bridge, discussed in the Appendix, Section I).

The assumptions listed, along with the sketches contained within the technical memos, were used to estimate material quantities and labor for the conceptual bridge quantities.

This memorandum includes the following information:

- I-5 Trade Corridor Study Phase II, Analysis of Glenn Jackson Bridge Constraints on LRT
- Feasibility of Widening Existing Glenn Jackson Bridge Superstructure
- Conceptual Cost Estimate for:
I. Scenario 1 (LRT placed on inside shoulders with 4 GP lanes. Shoulder widths both inside and outside reduced to $3^{\prime}-6^{\prime \prime}$.)
II. Scenario 2B (Glenn Jackson Bridge widened by 10 ' to each side with LRT centered between the twin bridges, 4-General Purpose lanes with full (10') Shoulders and Pedestrians on a suspended walkway under the twin bridges)

III. Scenario 3 (New Independent LRT only Bridge)

The assumptions listed in these this technical memorandum were used to develop conceptual level cost estimates. The estimates with Scenarios 1 and 3 are based on quantifiable project parameters. The estimate for Scenario 2B was based upon broad assumptions and we recommend the need for extensive engineering studies to validate the concept presented.

Results of the cost analysis are as follows:

Scenario	Range of Cost (Structural Only)	Engineering (Structural OnIy)	Contingency	Total ${ }^{(5)}$ $(\mathbf{2 0 0 1} \$)$
1-LRT on inside shoulders with four general purpose lanes and reduced shoulder widths of $3^{\prime}-6^{\prime \prime}$	$\$ 18$ to $\$ 50$ Million	$\$ 8$ Million $^{(1)}$	$\$ 17$ Million $^{(4)}$	$\$ 75$ Million
2B-Widened Glenn Jackson Bridge	$\$ 70$ to $\$ 150$ Million	$\$ 38$ Million $^{(2)}$	$\$ 75$ Million $^{(4)}$	$\$ 263$ Million
3-New Independent LRT Only Bridge	$\$ 115$ to $\$ 168$	$\$ 25$ Million $^{(3)}$	$\$ 60$ Million ${ }^{(4)}$	$\$ 253$ Million

${ }^{(1)}$ Engineer $=500$ for load rating $+15 \%$ of cost range high end.
${ }^{(2)}$ Engineering 750 for load rating and widening concept analysis $+25 \%$ of Base Cost
${ }^{(3)}$ Engineer for Scenario 3-15\%
${ }^{(4)}$ Contingency for Scenario 2B - 40\%, for Scenario 1 and $3-30 \%$
${ }^{(5)}$ Based on highest range cost.

October 12, 2001

APPENDIX:

I Analysis of Glenn Jackson Bridge Constraints on LRT
II Feasibility of Widening Existing Glenn Jackson Bridge Superstructure
III Cost Estimate for Scenario 2B
IV Cost Estimate for Scenario 3


```
To: Jay Lyman
From: Connie Kratovil
Date: October 12,2001
Prepared by: Mike Traffalis
Subject: ODOT Contract No. 16902 - I-5 Trade Corridor Study Phase II
Analysis of Glenn Jackson Bridge Constraints on LRT
```


GLENN JACKSON BRIDGE ASSESSMENT - TECHNICAL MEMORANDUM

Objective: The objective of this technical memorandum is to evaluate past studies related to the structural condition of the Glenn Jackson Bridge, provide any updates, discuss current issues, and conceptualize scenarios to support future Light Rail operations on the Glenn Jackson Bridge. This assessment is being conducted as part of the I-5 Trade Corridor Study for ODOT and WSDOT in corporation with Tri-Met.

1. Berger abam report, December 1990
a. Berger ABAM Report: The ABAM report, which reviewed the bridge and its design in December 1990, offered the following summary:

Conclusion: It is structurally feasible to use the existing I-205 Columbia River Bridges to carry four traffic lanes and LRT operation in each direction (Based upon running 4 lanes of HS20-44 with 1 lane of LRT). Track work will have to be of the direct fixation (DF) type because a ballasted deck would add too much load to the bridge.... The maximum Live Load increases for longitudinal superstructure elements are 8%, which were deemed within acceptable limits.

Since ABAM performed this analysis, some changes in the Live Load input have happened over the last 10 years.

2. UpDates to Live Loading

a. Design Vehicle (2001)
i. Highway:

1. The highway loading used in the original design was HS20-44. The designer used 5 lanes of this loading in the calculations. AASHTO (Design code in 1980 's and 2000 's) allowed and allows a 25% reduction of this loading for 4 lanes or more. It is noted in the ABAM report that the designer did not apply this allowable reduction to superstructure members, but did apply it to substructure members; therefore one could conclude that the bridge superstructure was designed for 25% more live load than required by code.
2. Current DOT (ODOT \& WSDOT) standards require new designs to use a live loading of HS25. This loading is approximately 25\% larger than HS20-44.

ii. Light Rail

1. The LRT loading at the time of the original design was assumed equivalent to a lane of HS20-44. PB's past experience with assessing design LRT loading with HS20-44 for these large spans (400^{\prime} to 600^{\prime}) is that the LRT loading would be more on the order of double a highway traffic loading. Merely designing an extra lane of Live Load (HS20-44) might not accommodate for an equivalent LRT 4 car train at 150 kips per car when compared to a single lane loading.
2. The ABAM report evaluated the increase in Live Load given 4 lanes of Live Loading (HS20-44) and 1990 LRT (vehicle load $=134 \mathrm{kips}$) vehicle load. This is reported in the ABAM report as producing an 8% maximum increase in the longitudinal moment.
3. The current (2001) LRT vehicle is approximately 10% heavier than the LRT vehicle used in the 1990 report. (LRT vehicle load $=149.2 \mathrm{kips}$)
iii. June 26th I-5 Trade Corridor, Glenn Jackson Meeting with ODOT Region 1, ODOT Structures Department, WSDOT SW Region, and WSDOT Bridge and Structures Group.
4. At a Glenn Jackson Bridge workshop meeting held on June 26, 2001, ODOT Bridge Engineer, Sam Grossburg, reported that Oregon has been experiencing existing bridge strength issues (fatigue, etc.) associated with overload vehicles. ODOT additionally reported that, in their opinion, any reserve capacity that the Glenn Jackson Bridge might have should be reserved for the great number of undocumented overloads utilizing the freeway system today. Without an indepth capacity analysis (i.e. Load Rating), the actual amount of Live Load reserve capacity cannot be accurately determined.
5. WSDOT Bridge and Structures group representative, Mark Anderson, concurred with ODOT's statement.

3. Pending Issues

a. Capacity of the Bridge
i. Load Rating: to accurately define the current capacity and reserve Live Load capacities of the bridge, an in-depth load rating analysis should be conducted as follows:

1. Review existing information and prepare a model, which would include: loss of pre-stress, creep, shrinkage, and general conditions as reported on inspection reports. In addition, the construction sequence should be modeled to obtain the current magnitude and distribution of forces in the existing bridge.
2. Build transverse (section of deck) and longitudinal (superstructure) models.
3. Using these models, run a self-weight analysis and various combinations of Live Loads using AASHTO load groups.
4. Combine the effects of self-weight and Live Loads.
5. Determine Rating Factors (inventory and operating) with comment and conclusions.
b. Live Loading
i. The existing bridge superstructure was designed for 25% more HS20-44 than required by code.
ii. Current standards require use of HS25 loading which is 25% more than HS20-44.
iii. 5-lanes of HS25 would increase Live Loads by 25%. By replacing one of these lanes with current LRT 4 car train, the $\%$ increase would be higher.

4. Possible Scenarios

The Existing Cross Section for the Glenn Jackson Bridge

nor to scale

Section - Existing Glen Jackson and South Channel Bridges

The Existing Bridge currently carries a Pedestrian/Bike path between the two bridges. The path is approximately 8^{\prime} wide and runs the length of the bridge. Inside and outside shoulders are at 10^{\prime}, with both southbound and northbound having (4) 12^{\prime} general-purpose traffic lanes, producing an overall travel way of 68^{\prime} per bridge.

SCENARIO 1: (ABAM REPORT ALTERNATIVE)

This scenario was developed in the ABAM report. The LRT is proposed to run in the inside shoulder area of existing bridge (future structural analysis (load rating) to determine the feasibility). In addition, FHWA will need to be contacted at a future date by the I-5 Trade Corridor Management Team to determine if FHWA will allow the proposed inside and outside shoulders to be reduced to $3^{\prime} 6^{\prime \prime}$ as depicted below.

Functional/Operational Considerations

Per discussion with ODOT/WSDOT, the resulting $3^{\prime}-6^{\prime \prime}$ shoulder widths are not desirable, and will require detailed discussion with the Federal Highway Administration. Therefore, this scenario will be carried forward, but with the notation that the reduced shoulder width could have the following affects:

- Driver uncertainty, resulting in lower speeds, and less highway capacity;
- Driver safety, with no pullouts for emergencies; and
- Emergency response for auto or LRT activity requires a lane closure.

Scenario 2:

LRT on slab between bridges.

Section 2A - Glen Jackson and South Channel Bridges

W/LR'T on 28' Slab between bridges, and maintaining full (10')

Shoulder w/ 10^{\prime} Ped/Bike facilities on each side.

This scenario (section 2A) utilizes the minimum LRT clear distance of 28 feet (the 28 feet for LRT width would not accommodate emergency $2^{\prime} 6^{\prime \prime}$ egress, this could be accomplished by having openings through the barrier periodically to allow LRT passengers to utilize the inside shoulder for emergency exit), combined first with (4) general purpose 12 -foot lanes and (2) 10 -foot shouiders, and reestablishing Pedestrian and Bike Facilities. This option requires the widening of approximately 21 feet to each side (for a pedestrian path on both sides).

Given the Glenn Jackson Bridge types (cast-in-place balanced cantilever segmental, and precast segmental), this amount of widening is not probable without the addition on new piers and footings. Therefore, a second width configuration could be explored (as shown in Section 2B, page 6). It would increase the out-to-out dimension of the twin bridges by $18^{\prime} 8^{\prime \prime}$. This would cause the exterior overhangs of the bridges to extend out an additional $9^{\prime} 4^{\prime \prime}$, and the pedestrian path to be re-established via a suspended walkway under the bridge or other configuration. Without a current load rating on file, and with no detailed analysis conducted on this second width configuration no definitive recommendation can be made as to if a potential fatal flaw exists with this scenario. Therefore, further studies would have to take place before an assessment can be made as to the applicability of this scenario, along with navigation clearance assessment of the suspended pedestrian path with Coast Guard and River Users.

File No. ODOT0000-0364

Technical Memorandum

Section 2B - Glen Jackson and South Channel Bridges w/LRT on 28 ' Slab between bridges,
utilizing shoulder (10^{\prime} inside, 10^{\prime} outside) \& Pedestrian Path Suspended Below

Scenario 3:

LRT on independent bridge

Section - Existing Glen Jackson and South Channel Bridges w/Independent LRT Bridge to west

This scenario is simply to build a new independent bridge to the either the downstream (as depicted above) or upstream side. This scenario could be the most costly.

RECOMMENDATIONS

Prepare LRT alignments for traffic modeling using the existing Glenn Jackson Bridge, showing a cost range to capture the low end (scenario 1, reuse of the existing bridge) and the high end (Scenario 3 for the new independent bridge). Cost estimates should also reflect, depending on the scenario being evaluated, the anticipated cost of in-depth load rating, design, construction, and contingencies.

To: Jay Lyman
From: Connie Kratovil
Date: October 12, 2001
Subject: Feasibility of Widening Existing Glenn Jackson Bridge Superstructure

SUMMARY

A concept was identified that may, after additional engineering analysis, prove to be structurally feasible for widening the existing Glenn Jackson Bridge. This concept.was used as a basis for developing order of magnitude construction costs.

The impacts of this scheme on traffic maintenance during construction were not addressed. In addition, the aesthetic impacts of this widening scheme were not addressed.

INTRODUCTION

This memorandum is a qualitative examination of issues associated with installing two tracks of light rail on the existing Glenn Jackson Bridge superstructure. Both the North Channel and South Channel bridges were examined. The scope of this document was limited to determining if there were any obvious fatal flaws in the installation of light rail, and to identify a concept to be used for development of order of magnitude construction costs.

Evaluation of the existing bridge substructure is outside the scope of this memo. Increasing the existing concrete pier section and enlarging the footing with new piles have been assumed and have been quantified in an attempt to capture probable work. It has been assumed that additional dead loads and added live loads would be taken by the added substructure capacity. This assumption would need to be verified by extensive engineering analysis.

This document is preliminary, in that it represents the first step in an extensive study that would need to be undertaken to determine if retrofitting light rail on the existing bridges was technically feasible. While some technical issues are identified, a detailed examination of all relevant technical issues was well beyond the scope of this memorandum. As a result, it cannot be stated with certainty that the concepts discussed could be directly implemented as they are depicted or described. Subsequent analysis and development may indicate that these concepts may not be technically feasible, or they may require extensive additional measures to be implemented to the extent that they are economically not feasible.

STUDY CROSS SECTION

The cross section that was examined consisted of the following:

- A 28 -foot-wide, two-track, light rail corridor located at the centerline of I-205
- Four 12 -foot-wide general purpose traffic lanes on each bridge, with 10 -foot shoulder on the median and shoulder sides
- 1'-4" traffic barriers on the outside of both shoulders

Drawings of the existing bridges indicate that the out-to-out dimension of the existing deck slabs is on the order of $149^{\prime}-8^{\prime \prime}$. The proposed cross section will be $169^{\prime}-4$ " wide. As a result, both existing bridges will need to be widened by approximately 10 feet.

An additional requirement was that any new widening must not require the construction of new substructure.

Proposed Section

(Not to Scale)

SOUTH CHANNEL BRIDGES

EXISTING BRIDGE CONSTRUCTION

The existing 3,120-foot-long South Channel crossing consists of two independent bridges: one bridge for northbound I-205 traffic, and one for southbound I-205 traffic. The bridges are separated by a 7' -4 " gap between the edge of their deck slabs. While the deck width varies near Government Island, the typical cross section is $70^{\prime}-8^{\prime \prime}$ wide.

Both bridge superstructures are five-cell, prestressed concrete box girders. The 17 spans are grouped into 6 longitudinally continuous frames. The structure depth varies between $6^{\prime}-6^{\prime \prime}$ and 8 feet, and accommodates a maximum span length of 200 feet. Deck slabs are of reinforced concrete construction and are not transversely prestressed. Longitudinal prestressing necessary to support the superstructure dead load and other applied loads is located in ducts within the webs. Typical bent construction consists of single round columns with integral pier caps, resting on a footing supported by steel H piles.

The design drawings are dated 1978, and depict prestressed concrete box girder construction that is representative of that time. Prestressed concrete box girders are designed with a maximum allowable longitudinal tensile stress to limit, if not eliminate, transverse cracking in the deck slab. In addition, the prestressing must provide the necessary strength required to longitudinally support the bridge and its applied loads. Typical practice is to optimize the use of prestressing steel, due to construction costs and allowable stress design criteria. As a result, this type of construction is relatively sensitive to significant increases in dead loads.

Generally, prestressed concrete box girder construction does not readily accommodate increases in longitudinal prestressing forces. The prestressing steel is located in internal ducts, and typical practice is not to provide additional empty ducts for installation of future prestressing steel. As a result, installation of additional prestressing force is typically done with external tendons (outside of the concrete cross section) that must be anchored to the existing bridge components to develop the required stressing forces.

An examination of the existing drawings indicates a number of features that may limit the installation of additional prestressing steel:

- The integral pier caps are relatively massive. Drawings depict pier diaphragms with a thickness of over 10 feet and a heavily reinforced cross section. Drilling through this thickness of concrete and reinforcing steel to install additional ducts could prove to be a formidable task. It cannot be assumed that the existing reinforcing steel is exactly where the design drawings depict it.
- In addition, the caps are transversely prestressed, with draped tendon profiles. Great care would need to be taken to avoid severing one of these tendons during the drilling process, since this prestressing provides the support of the outer box girder webs at the bents.

Abstract

Regardless of the difficulties associated with installing additional external prestressing tendons, it is assumed that this will be required regardless of whatever other modifications are done to accommodate LRT on the existing bridge. However, specific details regarding the number of additional tendons and their location are well outside of the scope of this study.

WIDENING TO THE OUTSIDE

The existing bridges have cantilevered deck slabs that extend $7^{\prime}-10^{\prime \prime}$ beyond the face of the exterior box girder webs. Increasing this dimension by ten feet to accommodate the study cross section would result in cantilevers that would far exceed the bending capacity of the existing cantilevered, reinforced concrete slabs.

Two options were examined:

- Construct a series of rectangular transverse stiffening ribs that would transfer the deck widening loads in bending to the interior box girder webs. It was assumed that these ribs would be cast-inplace concrete with a prestressing tendon located in the upper portion of each new rib.
- Construct a precast panel with integral struts to transfer the deck widening loads to the existing exterior web through a simplified truss action. The precast section would resist the cantilever movement through the use of transverse prestressing steel in external ducts, and anchored in cast-inplace blocks to the interior of the box girder.

One of the major constraints on either scheme is the existing longitudinal prestressing steel that is located in each of the existing girder webs. According to the existing drawings, the ducts follow a parabolic longitudinal profile that extends anywhere from 2 " above the bottom of the web to 1.5 " above the bottom of the deck slab. Any penetration of the box girder webs must not interfere with the existing prestressing ducts, as the tendons supply the support for the bridge superstructure. There is a high probability that transverse tendons, if located in a typical configuration, will conflict with the existing prestressing ducts in the vicinity of the piers. For that reason, there is no "typical" solution of detail that would apply to all portions of the existing bridge.

An additional constraint is the vertical reinforcing steel in the box girder webs. This reinforcement provides a large portion of the box girder shear strength. Any proposed construction scheme must locate the existing reinforcing steel in advance of drilling holes through the webs past the concrete cover. In the event that significant portions of the existing web steel is severed, measures must be taken to restore the girder shear strength.

Finally, both schemes will have a significant visual impact on the existing bridge. An aesthetic analysis was outside of the scope of this memorandum.

For purposes of establishing order of magnitude costs associated with retrofitting, the construction sequence and operations required for the precast concrete strut scheme is described in detail below.

- Place traffic barriers and demolish existing 7'-10" overhang. Expose 2 to 3 feet of the existing transverse reinforcing steel and clean.
- Locate existing longitudinal prestressing ducts. Selectively remove concrete cover to confirm existing duct locations and vertical reinforcing steel locations. Drill through web walls at location necessary for installation of new transverse prestressing tendon.
- Install new strongback at interior web location. Dowel into existing deck slab and soffit slab to anchor strongback. The transverse strength of the existing deck slab reinforcing steel would need to be verified, and strengthening measures, if required, would need to be developed.
- Place new 15-ton concrete slab segments. Install epoxy mortar on exterior face of existing exterior girder web to provide for uniform bearing.
- Install new prestressing bars. Place longitudinal closure concrete.
- Stress and grout prestressing bars.
- After installation of sections of panels, place edge barrier. Place concrete overlay to provide for smooth riding surface.

For estimating purposes, assume that the transverse prestressing force in each rib (at 10-foot o.c.) is on the order of 75 to 100 tons.

From a construction perspective, access to the interior of the box girder could prove to be difficult for the contractor. The drawings do not depict accessibility in any other than the existing center cell. Access hatches were not noted on the existing drawings, nor were access holes in the box girder webs for moving from one girder cell to the adjacent cell. Existing access should be verified in the field.

WIDENING TO THE INSIDE

The proposed cross section has a 28 -foot-wide LRT track slab that is centered between the northbound and southbound bridges. The track slab supports the rails, plinths, OCS poles, systems components, and other features. It is assumed that this track slab will be supported over center of each exterior web by elastomeric bearings. For purposes of this study, a 12 -inch track slab was assumed. The exact cross section of the track slab was not determined, as it could be solid rectangular, voided, or ribbed.

Aside from the LRT, the track slab is also assumed to support a suspended 20 -foot-wide walkway. It was assumed that the walkway would consist of steel framing supporting a 4' concrete slab. Hanger rods

Technical Memorandum

were assumed to transfer the walkway dead and live loads to the track slab directly above. In order to obtain a direct load path, and to reduce the dead load on the bridge superstructure, it was assumed that the existing cantilevered overhangs would be removed. Lateral loads on the walkway are assumed to be resisted by stabilizer cables, rods and dampers, or some other similar system that is attached to the adjacent box girder soffit with brackets.

It is assumed that the LRT slab and track would have expansion joints at the same locations as the existing superstructure expansion joints.

From a construction point of view, the widening to the inside appears to be less complex than widening to the outside. One feature that needs to be considered is the required work zone necessary to accommodate these modifications. If $11^{\prime}-8^{\prime \prime}$ is removed from the inside face of the deck and $7^{\prime}-10^{\prime \prime}+2^{\prime}$. $0^{\prime \prime}$ for barriers from the outside face, this results in a maximum remaining deck width of $49^{\prime}-22^{\prime \prime}$. This does not account for additional space necessary for erection equipment (such as cranes). As a result, it is anticipated that the number of existing traffic lanes would be reduced during construction, with the associated inconveniences to the public and restrictions on contractor operations. It is unknown if this is acceptable to the Oregon and Washington DOTs. Work on the outside widening could utilize bargemounted cranes to ease congestion. However, access on the inside of the existing girders is greatly complicated by the close proximity of the two parallel decks. It appears that the contractor will require a median construction zone for working on the inside of the existing girders.

NORTH CHANNEL BRIDGES

EXISTING BRIDGE CONSTRUCTION

The existing 7,167-foot long North Channel crossing consists of two independent bridges: one bridge for northbound I-205 traffic and one for southbound I-205 traffic. The bridges are structurally separated by a 7 '-4" gap between the edge of their deck slabs. While the deck width varies near the north side of the river, the typical cross section is $70^{\prime}-8$ " wide.

Drawings were not available for the 1,967-foot-long Washington approach bridge (north of Pier 10). It is assumed that, since these spans were constructed over land, they are of similar construction to the South Channel spans. The Washington approach bridge superstructures are assumed be five-cell, prestressed concrete box girders. The discussion regarding the South Channel bridges would also apply to these structures.

The remainder of the North Channel bridge structure consists of 18 spans grouped into 6 longitudinally continuous frames. There are also two different types of construction in this portion of the bridge:

- A 1,882-foot-long, cast-in-place, segmental concrete cantilever construction for Spans 10 through 13. This portion includes the span over the navigation channel. In this area, the structure depth varies between 17 and 30 feet, and the span lengths vary from 360 feet to 600 feet. The drawings depict a two-cell cross section with $10^{\prime}-2$ " cantilever deck slabs.
- A 3,318-foot-long, precast segmental concrete cantilever construction for Spans 14 through 26 , the approach spans extending to the north shore of Government Island. The structure depths vary from 12 to 17 feet, and the span lengths from 242 feet to 360 feet. The drawings depict a two-cell cross section with $10^{\prime}-2$ " cantilever deck slabs.

The design drawings depict a number of features that influence the ability of these structures to accommodate LRT installation:

- Unlike the South Channel bridge, the deck slabs of the segmentally constructed girders are transversely prestressed. This prestressing force provides the required transverse bending resistance in the relatively thin deck slab. Stressing anchors are located at the edge of the existing deck slabs. The drawings depict cast in dead-end anchors that develop the prestressing force through bond. Disturbing or removal of these anchorages must be avoided.
- Similar to the details of the falsework construction of the South Channel and Washington approach spans, a portion of the tendons in the precast segmental bridge spans is located in ducts within the webs. However, the majority of the prestressing in the precast segmental portion is located in ducts within the deck slab. This prestressing cannot be disturbed, as it literally supports the bridge
superstructure. Typically these ducts are relatively closely spaced. As a result, extreme care must be taken in locating deck penetrations.
- The drawings suggest that all of the longitudinal prestressing for the cast-in-place segmental portion is located within the deck slab.
- The drawings also depict vertical prestressing tendons in the precast segmental concrete girder webs. These tendons are located adjacent to the piers, and provide resistance to shear and web cracking.
- Similar to the South Channel and Washington approach bridges, no provisions have been made in the construction of the segmental bridge spans to accommodate installation of additional longitudinal prestressing steel. Provisions for adding additional post-tensioning after construction have been required by the AASHTO segmental bridge design code since 1989. However, the Glenn Jackson Bridge design precedes this date.
- The design of segmental bridges has typically been optimized to result in least-weight designs for achieving long spans. As a result, there is typically little reserve capacity in these structures for loads in excess of the design loads. Accompanying this is a relatively high degree of congestion of embedded items, such as reinforcing steel and prestressing ducts.

WIDENING CONCEPTS

The existing bridges have cantilevered deck slabs that extend $10^{\prime}-2{ }^{\prime \prime}$ beyond the face of the exterior box girder webs. Increasing this dimension by ten feet to accommodate the study cross section would result in cantilevers that would far exceed the bending capacity of the existing cantilevered transversely prestressed concrete slabs.

Similar to the South Channel concept described above, two options were examined. The concept using precast concrete struts to transfer the deck widening loads to the existing exterior web through a simplified truss action was identified as being the least-weight option.

The precast section would resist the cantilever movement through the use of transverse prestressing steel in external ducts. Unlike the South Channel, internal anchor blocks are not likely not to be feasible due to the existing longitudinal and transverse ducts in the deck slab. A "balanced" bracket scheme appears to be reasonable to minimize dead load torsional movements on the superstructure. An internal strut will likely be needed in each cell at each new tendon to minimize transverse web bending movements.

On the precast concrete segments, care will need to be taken to avoid interfering with the existing inclined tendons in the webs.

As with the South Channel spans, the vertical reinforcing steel in the box girder webs provides a large portion of the box girder shear strength. Any proposed construction scheme must locate the existing
reinforcing steel in advance of drilling holes through the webs past the concrete cover. In the event that significant portions of the existing web steel is severed, measures must be taken to restore the girder shear strength.

As with the South Channel Bridge, the proposed cross section has a 28 -foot-wide LRT track slab that is centered between the northbound and southbound bridges. It is assumed that this track slab will be supported adjacent to the existing exterior webs by elastomeric bearings. In addition to the LRT loads, the existing girder must also support a suspended 20 -foot-wide walkway. In order to obtain a direct load path, and to reduce the dead load torsional imbalance it was assumed that the walkway would be suspended from concrete struts similar to those used on the exterior girder face.

It is assumed that the LRT slab and track would have expansion joints at the same locations as the existing superstructure expansion joints.

For purposes of establishing potential costs associated with retrofitting, the construction sequence and operations required for the precast concrete strut scheme is described in detail below.

- Locate existing longitudinal prestressing ducts within girder webs. Selectively remove concrete cover to confirm existing duct locations and vertical reinforcing steel locations. Drill through web walls at location necessary for installation of new transverse prestressing tendons.
- Install new struts between existing girder webs.
- Install epoxy mortar on exterior and interior faces of existing exterior girder to provide for uniform bearing. Place new 25 -ton concrete slab segments on outside of girder. Then install new bracket on inside face of existing girder.
- Install new prestressing bars. Place longitudinal closure in concrete.
- Stress and grout prestressing bars.
- After installation of sections of panels, place edge barrier. Place concrete overlay to provide for smooth riding surface.

For estimating purposes, assume that the transverse prestressing force in each rib (at 12 feet o.c.) is on the order of 75 to 100 tons.

As with the South Channel Bridge, it was assumed that the increased dead load and live loads would require additional longitudinal post-tensioning to be installed. The installation of this prestressing would be subject to similar constraints that were previously noted for the South Channel Bridge.

ADDITIONAL ENGINEERING STUDIES REQUIRED FOR CONCEPT VERIFICATION

The following are required to validate the above-described concepts:

- Definition of highway, rail, and pedestrian design loadings
- Transverse analysis of existing superstructure cross sections with proposed modifications
- Longitudinal girder analysis, including shear capacity of the webs and bending capacity under service and ultimate loads. Analysis must be based on current state of stress in the segmental portions of the existing bridge.
- A detailed constructibility analysis

BASIS OF ESTIMATE

The following is a brief description of the development of the order of magnitude capital cost estimate for the widening of the existing Glen Jackson Bridge (l-205) over the Columbia River. The purpose of this estimate is to aid in the evaluation of the feasibility of retrofitting the existing bridge to accommodate a new LRT guideway and relocating pedestrian walkways below this new guideway.

The existing bridge consists of two distinct superstructure types as well as a portion of embanked section. These sections have been described as follows:

- North Channel 5,700 LF
- South Channel and Washington Approach
- Government Island (Embankment)

4,887 LF
1,170 LF

The scope of work and approximate quantities that were used to prepare the order of magnitude estimates are based on the written concepts and cross section sketches contained in a draft memo from Joe Showers to Mike Trafallis and dated September 5, 2001, as well as a Glen Jackson Bridge Widening Scope of Work received by e-mail on August 28, 2001.

The following major construction activities have been included in the cost estimate.

- Maintenance of Traffic
- Pier Footing Modifications; including cofferdams, additional steel piling, and additional reinforced concrete footings.
- Pier Modifications, including doweling tie-bars to the existing pier and adding a full height reinforced concrete collar.
- Superstructure Modifications, including selective demolition of existing structure, addition of new precast widening slab and struts, concrete closure and surfacing, additional transverse and longitudinal post tensioning, LRT reinforced concrete track slab, new concrete traffic barrier and modifications to the bridge deck drainage system.
- Pedestrian Walkway, including a suspended steel frame deck system, precast concrete walkway slab, stabilizing rods, chain link fencing, and paved walkway on the embankment section.

All construction cost are in 2001 dollars and a contingency of 30% has been added to the totals due to the conceptual nature of the design concepts.

These estimates represent an opinion of probable construction cost in 2001 dollars; based on our professional experience and qualifications. There are any number of factors which can influence a probable contractors actual bid, therefore we cannot guarantee that actual bids or final construction costs will not vary from this opinion of probable cost.

PROJE :AME:	\ddots	I-5 TRADE CORRIDOR STUDY
PROJECT NO.:		13926
DATE:	\ddots	$10 / 12 / 2001$
ESTIMATOR:		\ddots

CONCEPTUAL COST ESTIMATE

Summary of Alternative - Glen Jackson Bridge Retrofit for LRT (2nd Qtr. 2001 Dollars in Millions)

Major Construction Item	Glen Jackson Bridge			
	North Channel	South Channel	Government Island	\square
GENERAL REQUIREMENTS	\$1.3	\$1.0		\$2.3
PIER FOOTINGS - MODIFICATIONS	\$27.2	\$44.2		\$71.3
PIERS - MODIFICATIONS	\$3.5	\$5.7		\$9.2
SUPERSTRUCTURE - MODIFICATIONS	\$30.5	\$21.4		\$52.0
PEDESTRIAN WALKWAY	\$6.7	\$5.7	\$0.4	\$12.7
SUBTOTAL CONSTRUCTION COST-2001 \$	\$69.1	\$78.0	\$0.4	\$147.5
CONTINGENCIES: 30%	\$20.7	\$23.4	\$0.1	\$44.3
TOTAL CONSTRUCTION COST-2001 \$	\$89.9	\$101.4	\$0.5	\$191.8
L.ENGTH OF ALIGNMENT - LF	5,700	4,887	1,170	11,757

Parsons Brinckerhoff Construction Services

PROJECT NAME:	I-5 TRADE CORRIDOR STUDY
PROJECT NO.:	13926
DATE:	$10 / 12 / 2001$
ESTIMATOR:	R. HARBUCK

GLEN JACKSON BRIDGE RETROFIT
North Channel Structure

$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	ITEM DESCRIPTION	EST. QTY.	UNIT	$\begin{aligned} & \hline \text { UNIT } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { COST } \end{aligned}$
,	General Requirements				
1	Precast barrier wall, temp.	18,400	If	\$35.00	\$644,000
2	Warning panels	4	ea	\$3,000.00	\$12,000
3	Plastic drums	550	ea	\$100.00	\$55,000
4	Signing and stripping	4.3	Im	\$15,000	\$64,500
5	Maintenance of Traffic	24	mo	\$20,000	\$480,000
	Subtotal General Requirements				\$1,255,500
	Pier Footings - Modified				
6	Cofferdam, temporary	163,200	sf	\$50.00	\$8,160,000
7	Structural excavation	16,864	cy	\$35.00	\$590,240
8	Furnish and install steel pipe piling	76,800	If	\$60.00	\$4,608,000
9	Concrete, seal slab	16,864	cy	\$350.00	\$5,902,400
10	Concrete, footing	16,416	cy	\$482.00	\$7,912,512
	Subtotal Pier Footings - Modified				\$27,173,152
	Piers-Modified				
11	Doweling to existing pier	22,080	ea	\$50.00	\$1,104,000
12	Concrete, footing	3,264	cy	\$733.00	\$2,392,512
	Subtotal Piers - Modified				\$3,496,512
	Superstructure - Modifications				
13	Demolish existing traffic barrier	22,800	If	\$10.00	\$228,000
14	Precast deck slab and strut, 12 ' segments, outside	950	ea	\$10,000	\$9,500,000
15	Precast struts, 12 ' segments, inside	950	ea	\$4,000	\$3,800,000
16	Precast struts, $12{ }^{\prime}$ spacing, internal	950	ea	\$2,000	\$1,900,000
17	Post-tensioning	600	tn	\$6,500	\$3,900,000
18	Concrete clouser pours	845	cy	\$350.00	\$295,750
19	Concrete overlay, ${ }^{\prime \prime}$ thick	12,667	sy	\$40.00	\$506,667
20	Concrete traffic barrier	22,800	If	\$35.00	\$798,000
21	Concrete track slab	35,467	sy	\$190.00	\$6,738,667
22	Elastometric bearings	2,850	ea	\$800.00	\$2,280,000
23	Bridge deck drainage piping	1	Is	\$600,000	\$600,000
	Subtotal Superstructure - Modifications				\$30,547,083
	Pedestrian Walkway				
24	Chain link fence	136,800	sf	\$8.00	\$1,094,400
25	Steel framing	1,995	tn	\$2,000.00	\$3,990,000
26	Precast concrete slab, 4"	114,000	sf	\$10.00	\$1,140,000
27	Stabilizer rods	1,425	ea	\$300.00	\$427,500
	Subtotal Pedestrian Walkway				\$6,651,900

Parsons Brinckerhoff Construction Services

PROJECT NAME:	I-5 TRADE CORRIDOR STUDY
PROJECT NO.:	13926
DATE:	$10 / 12 / 2001$
ESTIMATOR:	R. HARBUCK

GLEN JACKSON BRIDGE RETROFIT
South Channel and Washington Approach Structure

PROJECT NAME:	$1-5$ TRADE CORRIDOR STUDY
PROJECT NO.:	13926
DATE:	$10 / 12 / 2001$
ESTIMATOR:	R. HARBUCK

GLEN JACKSON BRIDGE RETROFIT
Government Island Pedestrian Walkway

$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	ITEM DESCRIPTION	EST. QTY.	UNIT	$\begin{aligned} & \text { UNIT } \\ & \text { COST } \end{aligned}$	TOTAL COST
	Pedestrian Walkway				
1	Clearing and Grubbing	3,120	sy	\$1.00	\$3,120
2	Rough Grading	28,080	sf	\$0.40	\$11,120
3	Finish Grading	23,400	sf	\$0.60	\$14,040
4	Geotextile Fabric	2,600	sy	\$1.50	\$3,900
5	Erosion Control	2,340	If	\$22.00	\$51,480
6	Underdrains	2,340	If	\$18.00	\$42,120
7	Walkway Drainage	2,340	If	\$40.00	\$93,600
8	Walkway Paving	23,400	sf	\$5.00	\$117,000
9	Walkway Signage	23,400	If	\$2.00	\$46,800
	Subtotal Pedestrian Walkway				\$383,180

Airport Jct to Van Mall TC \& P/R (Via New CRC Bridge)

$1-205$	Segment 1	Segment 2	Sagmeni 3	Segment 4	Segmant 5		
CAPITAL COST ESTIMATE	Alipor Jal to Slata Line	Wash St Line to SE 10th	SE 10th - Mill Plain Area	Mill Plain to Van Mall Tc	Van Mali TC to NE 83rd	Systems	Totals
dated Juy 2001 in Second Quarter 2001 Dollars.	12,950 LF	5,960 LF	6,700 LF	13,446 LF	9,900 LF	48,956 LF	48,956 LF TOTAL
\cdots civil construction a 6 \%	\$129,547,159	\$63,954,846	\$28,630,087	\$47,767,360	\$35,158,374		\$305,057,027
							\$0
3 TRACK MATERIALS							50
T, 4 TRANSTIVEHCLES (19 LRVs) \$ $\$ 57.274,711$						\$57,274,711	\$57,274,711
SOA OPERATIONS FACILITIES (Proraled IorRocky Butte) 511,724,361:						\$11,724,36	\$11,724,361
	\$4,874,215	\$2,220,687	\$2,167,290	\$4,190,550	\$3.012.557		\$16,465,297
inginals \$15,997,063	\$4,384,545	\$1,676,908	\$1,885,114	\$4,524,100	53,526,396		\$15.997,063
	\$1,366,797	\$629,043	\$707,446	\$1,419,147	\$1,044,887		\$5,167,020
	\$0,	so	\$248,00t	\$744,003	\$329,042		\$1,321,846
HO QRGHT OF WAYREAL ESTATE $\$ 22,519,469$	\$3,600	\$3,727,006	\$4,189,755	\$8,408,276	\$5,400,032		\$22,519,499
	\$46,674.645	\$22,835,675,	\$11,043,563	\$19,053,279	313,783,006	56.428,023	\$119,820,191
12 eqongGencies \$118.001,527	\$46,525.862	\$22,861,217	\$10,536.612	\$17.607.957	\$12.059.968	\$8,409,911	\$118,001,527
	\$233,376,823	\$117,905,381	\$59,407,568	\$103.724.672	\$75,105,862	\$83,829,007	\$673,349,313
	\$342,133,028	\$172,050,606	587,092,158	\$152,061,52B	\$110,06,032	\$122,984,261	\$987,137,612
Cost per mile calculaion in milions $\begin{gathered}\text { Miles } \\ \text { a }\end{gathered}$	$\$ 139 \mathrm{M}$ per intite	1.13 $\$ 153 \mathrm{M}$ per mile	$\begin{array}{r} 1.27 \\ \$ 69 \mathrm{M} \text { per milo } \end{array}$	$\begin{array}{r} 2.55 \\ 560 \mathrm{M} \text { per mite } \end{array}$	$\$ 59 \mathrm{M}$ per mile $\begin{array}{r}1.88 \\ \hline\end{array}$	513 M per mile $\begin{array}{r}9.27\end{array}$	$\$.27$ $\$ 106 \mathrm{M}$ per mile

Jark County Light Rail Cost Estimate

Jlark County Light Rail Cost Estimate

iheet:	Segment 1	Airport Jct to Van Mall TC \& P/R (via I-205 - New CRC Br)
ingineer:	B Dethlefts	Airport Jct to Wast State Line (l-205 Alignmenl)

| ingineer: | B Dethlefls
 $25+50$$\quad 255+00$ |
| :---: | :---: |\quad Airport Jct to Wash State Line (l-205 Alignment) | Oregon Slde |
| :---: |

		Date: Estimator: Lengils	$\begin{gathered} 8 / 28 / 01 \\ \text { David Chiara } \end{gathered}$										
BegSTA	EndSTA						Quantily	Unit	UnitCost	Line Cost	Contingency	$\begin{aligned} & 25 \% \\ & \text { E\&A } \\ & \hline \end{aligned}$	Total
214+30	255+00	4,070	-		0	1.00	4,070	RF	\$640.87	\$2,608,331	\$521,666	\$782,499	\$3,912,486
$125+50$	255+00	647,500	-		0	1.00	647,500	LS	\$1.00	\$647,500	\$259,000	\$226,625	\$1,133,125
125+50	255+00	-1,942,500	-		0	1.00	1,942,500	LS	\$1.00	\$1,842,500	\$777,000	\$679,875	\$3,399,375

OTAL BY COST CATEGORY	
ILG	Quilding
OM	Communications
:RS	Crossings
LC	Traction Electrification
OU	Equipment
CL.	Fare Collection
RRD	Track Grade Construction
RK	Park \&ide
IG	Signal System
IT	Sitework
PC	Special Conditions
TA	Stations
TR	Street Reconstruction
TU	Structures
RK	Trackwork
TL	Ltililiés

	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
	$\$ 0$	$\$ 1,366,797$	$\$ 273,359$	$\$ 410,039$
	$\$ 0$	$\$ 2,050,195$		
	$\$ 0$	$\$ 0$	$\$ 0$	
	$\$ 4,874,215$	$\$ 974,843$	$\$ 1,462,264$	$\$ 7,311,322$
	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
	$\$ 4,376,304$	$\$ 1,531,706$	$\$ 1,477,002$	$\$ 7,385,012$
	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
	$\$ 4,384,545$	$\$ 876,909$	$\$ 1,315,364$	$\$ 6,576,818$
	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
	$\$ 628,250$	$\$ 219,888$	$\$ 212,034$	$\$ 1,060,172$
	$\$ 570,453$	$\$ 171,136$	$\$ 185,397$	$\$ 926,986$
	$\$ 1,446,636$	$\$ 506,323$	$\$ 488,240$	$\$ 2,441,199$
	$\$ 112,990,632$	$\$ 39,546,721$	$\$ 38,134,338$	$\$ 190,671,692$
	$\$ 6,944,884$	$\$ 1,388,977$	$\$ 2,083,465$	$\$ 10,417,329$
	$\$ 2,580,000$	$\$ 1,036,000$	$\$ 906,500$	$\$ 4,532,500$

Civil Conslruction
Crossings
Track Grade Construction
Park \& Ride
Special Condilions
Stations
Street Reconstruction
Struclures
Trackwor
Utilities
Total - Civil Construclion
TES
Signals
Communications
Fare Collection

$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
$\$ 4,376,304$	$\$ 1,531,706$	$\$ 1,477,002$	$\$ 7,385,012$
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
$\$ 628,250$	$\$ 219,818$	$\$ 212,034$	$\$ 1,060,172$
$\$ 570,453$	$\$ 171,136$	$\$ 185,397$	$\$ 926,986$
$\$ 1,446,636$	$\$ 506,323$	$\$ 488,240$	$\$ 2,441,199$
$\$ 112,990,632$	$\$ 399646,721$	$\$ 38,134,338$	$\$ 190,671,692$
$\$ 6,944,884$	$\$ 1,38,977$	$\$ 2,083,465$	$\$ 10,417,326$
$\$ 2,590,000$	$\$ 1,036,000$	$\$ 906,500$	$\$ 4,532,500$
$\$ 129,547,159$	$\$ 44,400,751$	$\$ 43,486,978$	$\$ 217,434,888$
$\$ 4,874,215$	$\$ 974,843$	$\$ 1,462,264$	$\$ 7,311,322$
$\$ 4,384,545$	$\$ 876,909$	$\$ 1,315,364$	$\$ 6,576,818$
$\$ 1,366,797$	$\$ 273,359$	$\$ 410,039$	$\$ 2,050,195$
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
$\$ 10,625,557$	$\$ 2,125,111$	$\$ 3,197,667$	$\$ 15,938,335$
$\$ 140,172,716$	$\$ 46,525,862$	$\$ 46,674,645$	$\$ 233,373,223$

lark County Light Rail Cost Estimate

Building
Communications
Crossings
Traction Electrification
Equipment
Fare Collection
Track Grade Construction
Park \& Ride

$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
$\$ 629,043$	$\$ 125,809$	$\$ 188,713$	$\$ 943,565$
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
$\$ 2,220,687$	$\$ 444,137$	$\$ 666,206$	$\$ 3,331,030$
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$
$\$ 1,861,261$	$\$ 651,441$	$\$ 628,176$	$\$ 3,140,879$
$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$

Jlark County Light Rail Cost Estimate															
iheet:	Segment 2	Airport Jct to Van Mall TC \& P/R (via l-205)			Date:Estimator:	David Chiara									
ingineer:	B Dethlefts	Wash State Line to SE 10 th ($1-205$ Alignment)													
$55+00$	$288+60 \mathrm{Bk}$	Washington Side		EndSTA		Width	Height	Factor	Quantily	Unit	UnitCost	Line Cost	Contingency	25\%	
:ategory	Cost Code	Descripion	BegSTA		Lengll									E\&A	Total
IG		Signat System										\$1,676;908	\$335,382	\$503,072	\$2,515,362
IT		Sitework										\$0	\$0	\$0	\$0
iPC		Special Conditions										\$2,106,600	\$737,310	\$710,978	\$3,554,888
iTA		Stations										\$262,540	\$78,762	\$85,326	\$426,628
iTR		Street Reconstruction										\$745,935	\$261,077	\$251,753	\$1,258,765
iTU		Structures										\$55,464,314	\$19,412,510	\$18,719,206	\$93,596,030
RK		Trackwork										\$2,954,445	\$590,889	\$886,334	\$4,431,668
ITL.		Utililies										\$559,750	\$223,800	\$195,913	\$979,563
											Totals	\$68,481,483	\$22,861,217	\$22,835,675	\$114,178,375
		Civil Construction													
		Crossings										\$0	\$0	$\$ 0$	\$0
		Track Grade Construction										\$1,861,261	\$651,441	\$628,176	\$3,140,879
		Park \& Ride										\$0	\$0	\$0	$\$ 0$
		Special Conditions										\$2,106,600	\$737,310	\$710,978	\$3,554,888
		Stations										\$262,540	\$78,762	\$85,326	\$426,628
		Street Reconstruction										\$745,935	\$261,077	\$251,753	\$1,258,765
		Structures										\$55,464,314	\$19,412,510	\$18,719,206	\$93,596,030
		Trackwork										\$2,954,445	\$590,889	\$886,334	\$4,431,668
		Utilities										\$559,750	\$223,900	\$195,913	\$979,563
		Total - Civll Construction										\$63,954,846	\$21.955,890	\$21,477,684	\$107,388,419
		TES										\$2,220,687	\$444.137	\$666,206	\$3,331,030
		Signals										\$1,676,908	\$335,382	\$503,072	\$2,515,362
		Communications										\$629,043	\$125,809	\$188,713	\$943,565
		Fare Collection										\$0	\$0	$\$ 0$	\$0
		Total - Systems										\$4,526,637	\$905,327	\$1,357,991	\$6,789,956
												\$68,481,483	\$22,861,217	\$22,835,675	\$114,178,375

Dlark County Light Rail Cost Estimate																
iheel: :ngineer. 26+00 ;ategory	Segment 3 B Dethlefts $393+00$ Cost Code	Airport Jct to Van Mall TC \& P/R (via l-205) SE 10 th to north of Mill Plain (l-205/Chkalov Dr Alignment) Washington Side Description											Line Cost	Contingency	25\%	Total
			BegSTA	EndSTA	Lenglh	did	Height			Quantity	Unit	UnilCost			E\&A	
;OM	COMBIN	communication	$326+00$	$393+00$	6,700	0		0	1.00	6,700	RF	\$105.54	\$707,146	\$141,429	\$212,144	\$1,060,719
:RS	Street	Street And Track ${ }_{\text {© }}^{\text {O }}$ Interseccions	$326+00$	393+00	- 5	0		0	1.70	5.0	EA	\$158.859.97	\$1.350.310	\$405,093	\$438.851	\$2.194,253
;RS	SIGNAL	Modify Existing Traffic Signals	$326+00$	393+00	-	0		0	0.67	0	EA	\$160,984.93	\$0	\$0	\$0	\$0
:RS	SIGNAL	New Trafic Signals (SW 10k, Mill Plain + 3)	$326+00$	393+00	5	0		0	1.00	5	EA	\$160,984.93	\$804,925	\$241,477	\$261,601	\$1,308,003
:RS	GATE1	\dagger Gaie With Flashors	$326+00$	393+00	-	0		0	1.00	0	EA	\$122,500.32	\$0	\$0	\$0	\$0
LC	CAT	Double Track Catenary System - bridges	$326+00$	393+00	5,475	0		0	1.00	5.475	RF	\$301.08	\$1,648.424	\$329,685	\$434,527	\$2,472,635
LC	CATBR	Double Track Catenary On Aridge	$326+00$	393+00	1,225	0		0	1.00	1.225	RF	\$423.5	\$518,866	\$103,773	\$155,660	\$778,299
CL	TOTEA	Slation (1) SE Chxalov Dr - Split Platioms	353*75	355+75	2	0		0	1.00	2	EA	\$124,000.57	\$248,001	\$37,200	\$71,300	\$356,502
;RD	AERIALD	Aerial Doubte, Ductbanks	332+50	338+00	550	0		0	1.00	550	RF	\$102.54	\$56,396	\$19,739	\$19,034	\$95,168
;RD	D	L.RT Grade Construction-50 Ft Row	338+00	377+80	3.980	0		0	1.00	3,980	RF	\$756.32	\$3,010,161	\$1,053,556	\$1,015,829	\$5,079,646
iRD	AERIALD	Aerial Double, Duclbarks	$380+25$	$387+00$	675	0		0	1.00	675	RF	\$102.54	\$69,213	\$24,225	\$23,359	\$1:6,797
iRD	EXC-MAJ	Allowance for Cut	$326+00$	$393+00$	-	40.00		2	1.00	0	CY	\$14.82	\$0	\$0	\$0	\$0
iRD	FILL-MAJ	Allowance for Fill	373+00	377+80	480	52.00		10	1.00	3,244	CY	\$14.82	\$136,989	\$47,946	\$46,234	\$231,170
RD	UNIQUE	Allowance for tree removal (replacement in SPC)	$326+00$	393+00	40,000	0		0	1.00	40,000	LS	\$1.00	\$40,000	\$14,000	\$13,500	\$67,500
RD	FENCE	Fencing	$373+006$	$377+80$	480	0		0	2.00	480	LF	\$18.52	\$17,782	\$6,224	\$6,002	\$30,008
RD	UnIQUE	Chain \& bollard (b-MAX style)	338+00	373+00	2,990	0		0	1.00	2.990	LS	\$1.00	\$2,990	\$1,047	\$1,009	\$5,046
RK	NA	No Park\& Ride Faciilites On This Sheel	$326+00$	$393+00$	-	0		0	1.00	0	RF	\$0.00	\$0	\$0	80	\$0
!	Sigali	Combined Signal System	$326+00$	$393+00$	6,700	0		0	1.00	6.700	RF	\$281.36	\$1.885.114	\$377,023	\$565,534	\$2,827,672
PC	UNIQUE	HAZ MAT Tesling a Remedialion	$326+00$	$393+00$	234,500	0		0	1.00	234,500	LS	\$1.00	\$234,500	\$82,075	\$79,144	\$395,719
PC	UNIQUE	Landscaping allowante	$326+00$	$393+00$	335,000	0		0	1.00	335,000	LS	\$1.00	\$335,000	\$117.250	\$113,063	\$565,313
PC	UNIQUE	Tree replacement allawance	$326+00$	393+00	50,000	0		0	1.00	50,000	LS	\$1.00	\$50,000	\$17,500	\$16.875	\$84,375
PC	WET-MIT	Wellans Miligation (atres)	$326+00$	$393+00$	-	0		0	1.00	0	EA	\$150,000.00	\$0	\$0	\$0	\$0
PC	UNIQUE	Operator's Building	$326+00$	393+00	-	0		0	1.00	a	LS	\$1.00	\$0	\$0	\$0	\$0
PC	UNIQUE	Washinglon Slate Saies Tax on Materials	$326+00$	$393+00$	900,000	0		0	1.00	900,000	LS	\$1.c0	\$800,000	\$315,000	\$303,750	\$1,518,750
ta	PRIV	Stalion @ SE Chkatov Dr - Split Platurms	353+75	355+75	1	0		0	1.00	1	EA	\$871,250.50	\$871,250	\$261,375	\$283,156	\$1,415,782
TA	unique	Signs \& Graphics for this alignment	$326+00$	$393+00$	187,278	0		0	1.00	187.278	LS	\$1.00	\$187,278	\$56,183	\$60,865	\$304,327
TA	UNIQUE	Signs \& Graphics for exisling lines	$326+00$	$393+00$	107,860	0		0	1.00	107,860	LS	\$1.00	\$107.860	\$32,358	\$35,054	\$175,272
IR	UNIQUE	Temporary Trafic Control an 1-205 \& SE Chkalov Dr	$326+00$	393+00	215,000	0		0	1.00	215,000	LS	\$1.00	\$215,000	\$75.250	\$72,563	\$362,813
IR	Unioue	Adjust WSDOT drainage (off struclure)	$326+00$	$332+50$	81,000	0		0	1.00	81,000	LS	\$1.00	\$81,000	\$28,350	\$27,338	\$136.688
TR	Unique	Adjust WSDOT drainage (off structure)	$387+00$	$393+00$	74,800	0		0	1.00	74.800	LS	\$1.00	\$74,800	\$26,180	\$25,245	\$126,225
tr	unioue	Allowance for bike paith afjuslments	$326+00$	393+00	-	0		0	1.00	0	LS	\$1.00	\$0	\$0	\$0	\$0
rR	DEMO 10	Allowance for demo of western side of SECHkatov Dr	$338+85$	$361+70$	2,285	65		0	1.00	16,503	SY	\$12.35	\$203,790	\$71,326	\$68,779	\$343,895
iR	CURB	Allowance for new curbs (bolh sides of SEChkatiov Dr)	338+85	$361+70$	2,285	0		0	2.00	2,285	LF	\$23.74	\$108,511	\$37,979	\$36,623	\$183,113
fr	WALKS	Allowance for new walk (west side of SE Chkalov Df)	338+85	$361+70$	2,285	10		0	1.00	2,539	SY	\$33.34	\$84,651	\$29,628	\$28,570	\$142,849
IR	PAV-STD	Allawance for new pavement (westems side - full)	338+85	$361+70$	2,285	28		0	1.00	7.109	SY	\$43.22	\$307,252	\$107.538	\$103,698	\$518,488
[R	PAV-min	Allowance for tane overtay - east side of Chrkaiov Dr	$338+85$	$361+70$	2,285	8		0	2.00	2,031	SY	\$30.87	\$125,409	\$43,893	\$42,326	\$211.623
IR	DEMO10	Allowance for demo of both sidies of SEChkatiov Dr	361+70	373+00	1.130	100		0	1.00	12,556	SY	\$12.35	\$155,046	\$54,266	\$52,328	\$261,640
rR	CURB	Allowance for new curts (both sides of SE Chkalov Dr)	361+70	373+00	1.130	O		0	2.00	\$,130	LF	\$23.74	\$53.662	\$18.782	\$18,111	\$90,555
rR	PAV-sTD	Allowance for new pavement (both sides - full)	$361+70$	373+00	1,130	28		0	2.00	3,516	SY	\$43.22	\$303.890	\$106,362	\$102,563	\$512,815
TR	- Walks	Allowance for new walks (bolh sides of SE Chkalov Dr)	$361+70$	$373+00$	1,130	10		0	2.00	1,256	SY	\$33.34	\$83,725	\$29,304	\$28,257	\$141,286
IU	RETFAL 15	Relained fill	326+00	332+50	650	-		0	1.00	650	RF	\$4,753.74	\$3,089,928	\$1,081,475	\$1,042,851	\$5,214,254
[AERIAL	Aerial LRT stuclure aver NB lanes of 1-205	332+50	338+00	550	-		0	1.00	550	RF	\$5,099.27	\$2,804,596	\$981.609	\$946,551	\$4,732,756
-	RETWAL 10	Relaining wail Righ side	$373+30$	$377+80$	450	10.00		0	1.00	4,500	SF	\$35.81	\$161.152	\$56,403	\$54,389	\$271,944
U	RETFIL 20	Rellained fill	377+80	380+25	245	-		0	1.00	245	RF	\$5,053.74	\$1,238,165	\$433,358	\$417.881	\$2,089,404
-	AERIAL	Aerial LRT structure aver NB tanes of -205	$380+25$	$387+00$	675	-		0	1.00	675	RF	\$5,099.27	\$3.442,005	\$1,204,702	\$1,161,877	\$5,808,393
U	RETFIL15	Retained fill	$387+00$	$393+00$	600	-		0	1.00	600	RF	\$4,753.74	\$2,852,242	\$998,285	\$962,632	\$4.813.158
U	JBARRIER	Jersey Bartier (Per Side) - off slucture	$387+30$	$393+00$	570	-		0	2.00	570	LF	\$44.70	\$50,955	\$17.834	\$17.197	\$85,987
3	STD	Tie \& Ballasi Double Track	$326+00$	332+50	650	-		0	1.00	650	RF	\$299.50	\$194,675	\$38,935	\$58,402	\$292,012
3K	DF	Double Track Direcl Fixation	$332+50$	$338+00$	550	-		0	1.00	550	RF	\$640.87	\$352.477	\$70,495	\$105,743	\$52B,718
¢K	Palvan	Paved track - mimus inlersections	$338+00$	373+00	2.990	-		0	1.00	2,990	RF	\$750.00	\$2,242,500	\$448,500	\$672,750	\$3,363,750
${ }^{\text {L }}$	UNIQUE	Ulilities - public ROW - WSDOT Row	$326+00$	$338+00$	180,000	-		0	1.00	180.000	LS	\$1.00	\$180,000	\$72,000	\$63,000	\$315,000
L	unique	Uililies - public Row	$338+00$	$373+00$	1.750,000	-		0	1.00	1,750,000	LS	\$1.00	\$1,750,000	\$700,000	\$612,500	\$3,062,500
L	unique	Uililies - publc Row - WSDOT ROW	$373+00$	$393+00$	300,000	-		0	1.00	300,000	LS	\$1.00	\$300,000	\$120,000	\$105,000	\$525,000

lark C leet: igineer: : $6+\infty$	unty Ligh Segment 3 B Dethlefls 393+00	Alrport Jct to Van Mail TC \& P/R (via I-205) SE 10th to north of Mill Plain (1-205/Chkalov Dr Alignment) Washington Side	Note: alig	ment chan	Date: Estimato ged from	$7 / 17$ David to SE C	ara	ase oplio	between	Seg 3					
alegory	Cost Code	Description	BegSta	EndSTA	Length	Width	Height	Factor	Quantity	Unit	UnilCost	Line Cost	Contingency	$\begin{aligned} & 25 \% \\ & \text { ERA } \end{aligned}$	rolal
		Seg 3 SE Chkalov Dr 393+00 $=390+54$ Seg 3 for l-205 Thru ve	ersion								Totals	\$33,637,638	\$10,536,612	\$11,043,563	\$55,217,813
JTAL BY COST CATEGORY															
-G		Buisding										\$0	\$0	\$0	\$0
JM		Communicalions										\$707.146	\$141,429	\$212,144	\$1,060,719
2S		Crossings										\$2.155,234	\$646,570	\$700,451	\$3,502,256
-C		Traction Electrification										\$2,167,290	\$433,458	\$650, 187	\$3,250,935
20		Equipment										\$0	\$0	\$0	\$0
J		Fare Collection										\$248,001	\$37,200	\$71,300	\$356,502
RD		Track Grade Construction										\$3,333,531	\$1.166,736	\$1,125.067	\$5,625,334
2K		Park \& Ride										\$0	\$0	\$0	\$0
G		Signat System										\$1,885,114	\$377,023	\$565,534	\$2,827,672
T		Silework										\$0	\$0	\$0	\$0
${ }^{\text {² }}$		Special Conditions										\$1,519.500	\$531.825	\$512,831	\$2,564,156
rA		Slations										\$1,166,388	\$349,916	\$379,076	\$1,895,381
rR		Sireel Reconstuction										\$1,796,737	\$628,858	\$606,399	\$3,031,995
UU		Struclures										\$13,639,044	\$4,773,665	\$4,603,177	\$23,015,886
३К		Trackwork										\$2,789,652	\$557,930	\$636,896	\$4,184,478
[L		Utilities										\$2,230,000	\$892,000	\$780,500	\$3,902,500
											Totals	\$33,637,638	\$10,536,612	\$11,043,563	\$55,217,813
		Civil Construction							,						
		Crossings										\$2,155,234	\$646,570	\$700,451	\$3,502,256
		Treck Grade Construction										\$3,333,531	\$1,166,736	\$1,125,067	\$5,625,334
		Park \& Ride										\$0	\$0	\$0	\$0
		Special Condilions										\$1,519,500	\$531,825	\$512,831	\$2,564,156
		Stations										\$1,166,388	\$349,916	\$379,076	\$1,895,381
		Street Reconstuction										\$1,796,737	\$628,858	\$606,399	\$3,031,095
		Structures										\$13,639,044	\$4,773,665	\$4,603,177	\$23.015,886
		Trackwork										\$2,789,652	\$557,930	-\$836,896	\$4,184,47B
		Utilities										\$2,230,000	\$892,000	\$780,500	\$3,002,500
		Total - Civil Construclion										\$28,630,087	\$9,547,502	\$9,544,397	\$47,721,986
		TES										\$2,167.290	\$433,458	\$650,187	\$3,250,935
		Signals										\$1,885,114	\$377,023	\$565,534	\$2,827,672
		Communicalions										\$707,146	\$141.429	\$212,144	\$1,060,719
		Fare Colleclion										\$248,001	\$37,200	\$71,300	\$356,502
Total - Systems												\$5,007,551	\$989.110	\$1,499,165	\$7.495,827
												\$33,637,638	\$10,536.612	\$11,043,563	\$55,217,813

neer: B Dethlefts Mill Plain to Vancouver Mall TC (l-205 Alignment)
$54 \quad 525+00 \quad$ Wili Plain to Vancouver Mail TC (inglon Side

Dale.
Estimator: David Chlara
from 1-205 Thru to SE Chkalov Dr as base option (equation between Seg 3 \& 4) Nole: alignment changed from 1-205 Thru to SE Chkalov or as base option
RegSTA EndSTA Lenglit
Widith Height Factor

Slark County Light Rail Cost Estimate

Sheet: Engineer: 390+54 Sategory	Segment 4 B Dethlefls 525+00 Cast Code	Airgort Jci to Van Mall TC \& P/R (via I-205) Mill Plain to Vancouver Mall TC (1-205 Alignment)	Date: 7/17/01 Estimator: David Chiara										Line Cost	Contingency	25\%	Total
		Description Washington Side	Note: alignment changed from 1-205 Thru to SE Chkaiov Dr as base option (equalion between Seg 3 \& 4)													
			BegSTA	EndSTA	Length	Width	Height	Factor		Quanlity	Unit	UnitCost			E\&A	
STR	close	Close cut-de-sac	$515+00$		71			0	1.00	560	SY	\$18.52	\$10,375	\$3,631	\$3,502	\$17.508
STU	AERIAL	L.RT Double Track Aerial Siructure	442+15	$443+90$	175	-		0	1.00	175	RF	\$5,099.27	\$892,372	\$312,330	\$301,175	\$1,505,877
$3 T \mathrm{~L}$	Jibarrier	Jersey Barrier (Per Sida) - off struture	$390 \div 54$	482+00	8,146	-		0	2.00	9,146	LF	\$44.70	\$817,609	\$286,163	\$275.943	\$1,379,715
3TU	STAIR	Staimay @ NE 18tis Stalion	$415+45$		25	-		0	1.00	25	LF	\$1.481.86	\$37,046	\$12,966	\$12,503	\$62,516
TTU	STAIR	Stairway @ Burtan Rd Station	$444+2 \mathrm{D}$		25	-		0	1.00	25	LF	\$1,481.86	\$37,046	\$12,966	\$12,503	\$62,516
3TU	RETFIL 15	Retained Fill - $15^{\prime} \mathrm{Avg}$. Hggt .	$480+75$	485+75	500	-		0	1.00	500	RF	\$4,753.74	\$2,376,868	\$831,904	\$802,193	\$4,010,965
STU	AERIAL	LRT Double Track Aerial Siructura	$485+75$	$490+55$	480	-		0	1.00	480	RF	\$5.099.27	\$2,447,648	\$856,677	\$826,081	\$4,130,406
iTU	RETFIL15	Retained Fill - $\mathbf{1 5}^{\text {A }}$ Avg. Hg .	$490+55$	$498+00$	745	-		0	1.00	745	RF	\$4,753.74	\$3,541,533	\$1,239,537	\$1,195,267	\$5,976,337
STU	RETFli. 15	Retainad Fill - $15^{\prime} \mathrm{Avg}$. Hg .	$498+00$	$505+00$	700	-		0	1.00	700	RF	\$4,753.74	\$3,327,615	\$1,164,665	\$1,123,070	\$5,615,351
stu	AERIAL	LRT Double Track Aarias Sinucture	505+00	$510+06$	506	*		0	1.10	506	RF	\$5,099.27	\$2,838,252	\$993,388	\$957,910	\$4,789,549
STU	RETfill 20	Retainad Fill - 20 Avg . Hg it.	$510+06$	$517+60$	754	-		0	1.00	754	RF	\$5,053.74	\$3,810,517	\$1,333,681	\$1,286,049	\$6,430,247
[RK	STD	Tie \& Ballast Doubie Track	$390+54$	$442+15$	5,161	-		0	1.00	5.161	RF	\$299.50	\$1,545,719	\$309,144	\$463,716	\$2,319,578
「RK	DF	Double Track Direct Fixation	442+15	$443+90$	175	-		0	1.00	175	RF	\$640.87	\$112,152	\$22,430	\$33,646	\$168,228
[RK	STD	Tie \& Ballast Double Treck	$443+90$	485+75	4,185	-		0	1.00	4.185	RF	\$299.50	\$1,253,407	\$250,681	\$376,022	\$1,880,111
[RK	DF	Double Track Direct Fixalion	$485+75$	490+55	480	-		0	1.00	480	RF	\$640.87	\$307.616	\$61,523	\$92,285	\$461,425
iRK	STD	Tie \& Eallasl Doubls Trsck	$490+55$	$505+00$	1,445	-		0	1.00	1,445	RF	\$299.50	\$432,777	\$86,555	\$129,833	\$649,166
-RK	DF	Dauble Track Diret Fixation	$505+00$	510+06	506	-		0	1.00	506	RF	\$640.87	\$324,279	\$84,856	\$97,284	\$486,418
-RK	STD	Tie \& Ealiasi Double Track	$510+06$	$517+60$	754	-		0	1.00	754	RF	\$299.50	\$225,823	\$45,165	\$67.747	\$338,734
RK	STO	Tie \& Dallast Double Track	$518+30$	525+00	670	-		0	1.00	670	RF	\$299.50	\$200,665	\$40.133	\$60,199	\$300,997
RK	COG	${ }^{\text {ma }}$ Dauble Cross Over - Tee Rail	$522+00$		- 1	-		0	1.00	1	EA	\$291.818.39	\$291,818	\$58,364	\$87,546	\$437.728
RK	TO16	\#20 Tumouls	524+80		2	-		0	1.00	2	EA	\$174,195.57	\$348,391	\$69,678	\$104,517	\$522,587
JTL	UNIGUE	Utifiles - privale Row - minor - on bridges	390+54	525+00	58,050	-		0	1.00	58,050	LS	\$1.00	\$58,050	\$23,220	\$20,388	\$101,588
JTL	UNIQUE	Utilites - public ROW - WSDOT ROW	390+54	$525+00$	1,925,850	-		0	1.00	1.925,850	L.S	\$1.00	\$1,925,850	\$770,340	\$674,048	\$3,370,238
										-		Totals	\$58,645,160	\$17,607,957	\$19,063,279	\$95,316,397
OTAL BY COST CATEGORY																
3LG		Building											\$0	\$0	\$0	\$0
こOM		Communications											\$1,419,147	\$283,829	\$425,744	\$2,128,720
SRS		Crossings											\$643,025	\$192,908	\$208,983	\$1,044,916
:LC		Traction Electrification											\$4,190,550	\$838,110	\$1,257,165	\$6,285,824
EQU		Equipment					.						\$0	\$0	\$0	$\$ 0$
:CL		Fare Collection											\$744,003	\$111,601	\$213,901	\$1,069,505
3RD		Track Grade Construction											\$8,876,714	\$3,106,850	\$2.995,891	\$14,979,455
'RK		Park \& Ride											\$2,773,407	\$554,681	\$832,022	\$4,160,110
IIG		Signal System											\$4,524,100	\$904,820	\$1,357,230	\$6.786.750
,		Sitework											\$0	\$0	\$0	\$0
;PC		Special Condilions											\$3,146,698	\$1.101,344	\$1.062,011	\$5,310,053
;TA		Stalions											\$2,872,284	\$861,685	\$933,492	\$4,667,462
iTR		Street Reconsiruction											\$2.302.178	\$805,762	\$776,985	\$3,884,926
;TU		Structures											\$20,126,506	\$7,044,277	\$6,792.696	\$33,963,479
RK		Trackwork	.										\$5,042,648	\$1,008,530	\$1,512.794	\$7,563,972
JTL		Uililies											\$1,983,900	\$793,560	\$694,365	\$3,471,825
												Totals	\$58,645,160	\$17,607,957	\$19,063,279	\$95,316.397
		Civil Construction											.			
		Crossings											\$643,025	\$192,908	\$208,983	\$1,044,916
		Track Grade Construction											\$8,876,714	\$3.106.850	\$2,995.891	\$14,979,455
		Park \& Ride											\$2,773,407	\$554,681	\$832,022	\$4,160,110
		Special Condilions											\$3,146,698	\$1.101,344	\$1,062,011	\$5,310,053
		Stations											\$2,872,284	\$861,685	\$933,492	\$4,667.462
		Street Reconsinuction											\$2,302,178	\$805,762	\$776,985	\$3,884,826
		Structures											\$20,126,506	\$7,044,277	\$8,792,696	\$33,963,479
		Trackwork											\$5,042,648	\$1,008.530	\$1,512,794	\$7,563,972

lark County Light Rail Cost Estimate

, lark County Light Rail Cost Estimate																
iheet: ingineer: $25+00$;ategory	Segment 5 B Delhtefts $624+00$ Cast Code	Airport Jct lo Van Mall TC \& P/R (via l-205) Vancouver Mall TC to NE 83rd Terminous (l-205 Alignment)			Date: Estimator:	7/17/01 David Chiara										
		Description	BegSTA	EndSTA	Length	Width	Helght	Factor		Quantity	Unit	UnilCost	Line Cost	Contingency	$\begin{aligned} & 25 \% \\ & \text { E\&A } \end{aligned}$	Total
RK	STO	Tie \& Ballast Single Track	620*97	$624+00$	303	-		0	0.50	303	RF	\$299.50	\$45,374	\$9.075	\$13,612	\$68,061
RK	TOB	\#a Turnout-Tee Rall	620+97		- 1	-		0	1.00	1	EA	\$76,235,41	\$76,235	\$15,247	\$22,871	\$114,353
RK	cosi	*a Single Cross Over	$608+50$	$614+20$. 2	-		0	1.00	2	EA	\$143,666.11	\$287,332	\$57.466	\$86,200	\$430,998
RK	BP	Bumping Post	$624+00$		1	.		0	1.00	1	EA	\$22,547.57	\$22.548	\$4,510	\$6,764	\$33,821
ITL	UNIQUE	Ulilikes - pubic Row - WSDOT ROW	525+00	$533+30$	207.500	-		0	1.00	207,500	LS	\$1.00	\$207.500	\$83,000	\$72,625	\$363,125
ITL	unique	Uuilites - private Row-minot-on bridges	533+30	535+90	58,050			0	1.00	58,050	LS	\$1.00	\$58,050	\$23,220	\$20,318	\$101,588
TL	UNIQUE	Ufitites - public Row - wsdor row	$535+90$	$624+00$	1,321,500	-		0	1.00	1,321,500	LS	\$1.00	\$1,321,500	\$528,600	\$462.525	\$2,312,625
												Totals	\$43,072,055	\$12,059,968	\$13,783,006	\$68,915,030
OTAL EY COST CATEGORY																
LG		Building											50	50	\$0	\$0
OM		Communicalions											\$1,044,887	\$208.977	\$313.466	\$1,567,331
RS		Crossings											5957,410	\$287,223	\$311,159	\$1,555,791
LC		Traction Electrification											\$3,012,557	\$602,511	\$903,767	\$4,518,835
QU		Equipment											\$0	\$0	\$0	\$0
CL		Fara Collection											\$329,842	\$49,476	\$94.829	\$474,147
RD		Track Grade Constuction											\$7,458,666	\$2,610,533	\$2,517,300	\$12,586,499
RK		Park \& Rida											\$8,425,866	\$1,585,173	\$2,527,760	\$12,638,799
IG		Signat System											\$3,526,396	\$705,279	\$1,057,919	\$5,289,594
IT		Sitework											\$0	\$0	\$0	\$0
PC		Special Condilions								,			\$2,933,001	\$1,026,550	\$989,898	\$4,949,440
TA		Stalions											\$1,402,543	\$420,763	\$455,827	\$2.279,133
TR	-	Streat Reconstruction											\$1,759,284	\$615.749	\$593,758	\$2,968,791
TU		Structures											\$7,240,008	\$2,534.003	\$2.443,503	\$12,217,514
RK		Trackwork											\$3,394,546	\$679.909	\$1,018,364	\$5,091,898
TL		Utilities											\$1,587,050	\$634,820	\$555,468	\$2,777,338
												Totals	\$43,072,055	\$12,059,968	\$13,783,006	\$68,915,030
		Civil Consiruction														
		Crossings											\$957.410	\$287,223	\$311,158	\$1.555,791
		Track Grade Construction											\$7,458,666	\$2,610,533	\$2,517,300	\$12,586,499
		Park \& Ride											\$8,425,865	\$1,685,173	\$2,527,760	\$12,638,799
		Spacial Conditions			1	.							\$2,933,001	\$1,026,550	\$989,888	\$4,949,440
		Stations											\$1,402,543	\$420.763	\$455,827	\$2,279,133
		Street Reconstruclion											\$1,759,284	\$615,749	\$593,758	\$2.966,791
		Structures											\$7,240,008	\$2,534,003	\$2,443,503	\$12,217.514
		Trackwork											\$3,394,546	\$678,909	\$1,018,364	\$5,091,818
		Uliililies											\$1,587,050	\$634,820	\$555,468	\$2,777,338
Tolat - Civil Construction													\$35,158,374	\$10,493,724	\$11,413,024	\$57,065,122
		TES											\$3,012,557	\$602.511	\$903,767	\$4,518,835
		Signals											\$3,526,396	\$705,279	\$1,057,919	\$5,289,594
		Communications											\$1,044.897	\$208,977	\$313,466	\$1,567.331
		Fare Collection											\$329,842	\$49,476	\$94,829	\$474.147
Total - Syslems													\$7,913,881	\$1.566.244	\$2,369,981	\$11,849,807
													\$43,072,055	\$12.059,968	\$13,783,006	\$68,915,030

