Transportation Results

Overview of Concept Packages

Concept Packages Evaluated

- Existing Conditions (2000)
- No Build (2020)
- Baseline (2020)
- West Arterial
- Express Bus/3 Lanes
- LRT/3 Lanes
- Express Bus/4 Lanes
- LRT/4 Lanes

Congested Lane-Miles
 On I-5 and I-205 (PM Peak)

Vehicle Hours of Delay
 In the Study Area (PM Peak)

Congestion on Truck Routes

Congested Lane-Miles (PM Peak)

Value of Truck Delay

(In the Study Area)

Option Package

2020 PM Peak Northbound Traffic Patterns Across the Columbia River

2020 PM Peak Northbound Truck Patterns Across the Columbia River

Task Force Draft Bridge Influence Area Recommendations

- Provide three through lanes throughout corridor.
- Provide more capacity across the Columbia River (up to 2 new lanes in each direction for vehicles and 2 light rail tracks).
- Consider interchange improvements between SR500 and Columbia Blvd., where necessary for the Interstate to function smoothly and safely.
- Make the Columbia Blvd. interchange into a full interchange to facilitate freight movement.

Bridge Influence Area Concepts

Range of River Crossing Concepts

- Supplemental vs. replacement bridge concepts
- Joint use (LRT-highway) vs. separate bridges
- Alignments east and west of existing bridges
- Freeway lanes and arterial lanes

Existing configuration:

Two three-lane, low-level lift span bridges

Concept 1:
 Five-lane supplemental bridge w/LRT, west of existing bridges

1. Southbound traffic on new five-lane bridge, LRT on lower deck
2. Low- to mid-level bridge, with lift span over existing navigation channel
3. Northbound traffic would be split between the two existing bridges

Concept 2:
 Five-lane supplemental bridge east of existing bridges, separate LRT bridge to the west

1. Northbound traffic on new five-lane bridge
2. LRT on new "stand-alone" bridge
3. Low- to mid-level bridges, with lift spans over existing navigation channel
4. Southbound traffic would be split between the two existing bridges, providing five to six lanes

Concept 3:

 Ten lanes on double-deck fivelane bridge, with LRT retrofitted on existing bridge1. Low- to mid-level bridge with lift span over existing navigation channel
2. Requires retrofitting existing bridge for LRT
(feasibility may be questionable)

Concept 4:
 Ten lanes on doubledeck bridge, with LRT on separate new bridge

1. Mid- to high-level bridges. Navigation channel relocated to center of river
2. Potential fixed spans for highway and LRT (with Coast Guard reduction of existing lift requirements), or lift spans

Concept 5:
 New six-lane supplemental bridge, use existing bridges for collector-distributor, new LRT bridge

1. Through traffic on new six-lane bridge
2. Existing bridges used for collector-distributor (moving freeway access away from through traffic)
3. LRT on new bridge
4. Low- to mid-level bridges, with lift span over existing navigation channel

Concept 6:

Four-lane supplemental bridge w/LRT, west of existing bridges

1. Provides for new fourlane bridge with LRT
2. Low- to mid-level bridge with lift span over current navigation channel
3. Use four-lane bridge as collector-distributor (i.e., ramp access for Hayden Island, etc.). Requires flyover ramps north and south, as shown in the schematic on the left

Concept 7:
 LRT bridge with twolane arterial, plus new three-lane supplemental bridge for freeway traffic

1. Provides for new fourlane bridge with LRT
2. Low- to mid-level bridges with lift spans over current navigation channel
3. Two lanes on existing northbound bridge could be used for HOV, express lanes, or (potentially) reversible lanes

Concept 8:

Eight-lane supplemental bridge east of existing bridges, LRT retrofit and two-lane arterial

1. Through traffic on new eight-lane bridge
2. Existing northbound bridge converted to local arterial between Hayden Island and downtown Vancouver
3. LRT on retrofitted southbound bridge
4. Low- to mid-level bridge, with lift span over existing navigation channel

River Crossing Concepts Evaluated

Concepts with ten freeway lanes (\#1-4):
\# 1: New five lane southbound bridge with LRT
\# 4: New double deck freeway bridge, with separate new LRT bridge

Concepts with 6 freeway lanes plus 4-lane CD system(\#5-6)
\# 6: New four lane/LRT bridge for ramp traffic
Concepts with 8 freeway lanes and 2 arterial lanes (\#7-8)
\# 7: New LRT bridge with two arterial lanes, plus new three lane freeway bridge

Transportation Performance

Findings

- Additional freeway capacity is needed to address the "bottleneck" caused by the existing bridges and to serve future demand.
- Additional river-crossing capacity plus interchange improvements significantly enhance system performance compared to today and compared to 2020 priority baseline.
- Concepts with 10 freeway lanes, and concepts with 8 freeway plus arterial lanes, appear promising. Trade-offs to be evaluated in future studies should include the balance of traffic on the freeway vs. local streets.

Findings

- Concepts that split freeway traffic across the river (i.e., supplemental bridge plus existing bridge) do not perform as well as concepts that keep traffic in contiguous lanes.
- HOV utilization and performance is highly dependent on the facilities provided:
- Additional river crossing capacity is needed for HOV system continuity
- Direct access ramps should be considered at key locations (i.e., SR 500)
- Bridge design affects HOV performance (separated bridges limit access)
- add arterial summary bullet

Performance Measures

- Bridge Influence Area (BIA) Freeway Performance
- Arterial River Crossing Performance
- Regional Changes in Travel Volumes on Affected Arterials

Bridge Influence Area Freeway Measures of Effectiveness

- Traffic Volumes
- Travel Time
- Speed
- Delay
- Queuing

Southbound Travel Demands
 Along I-5 (AM Peak Hour)

Northbound Travel Demands

Along I-5 (PM Peak Hour)

Average Speed
 I-5 Southbound - Main St. to Lombard (All Traffic)

Average Speed

I-5 Northbound - Main St. to Lombard (All Traffic)

Demand and Vehicle Hours of Delay

 (AM and PM Peak Periods)

Served Demand AM and PM Peak Hours

Two-Lane Arterial Results

- Projected Demands vs. Capacity
- Travel Patterns
- Travel Distances

Arterial Travel Demands

- Two-lane arterial modeled from:
- Vancouver CBD to Hayden Island
- Hayden Island to Marine Drive
- Marine Drive to Denver Avenue
- Vancouver CBD - Hayden Island segment would operate at capacity conditions during PM peak - slightly under during AM peak

Arterial Travel Demands

- 10\% of PM Arterial traffic from/to I-5
- 24% of AM Arterial traffic from/to I-5
- Arterial reduces peak direction volumes on I-5 bridge by 1,100-1,500 during peak hour

Arterial Travel Patterns
 Northbound Across Columbia River (PM Peak Period)

Average Trip Distances Dave needs to ask Metro for Mainline Results for Option 7 Northbound Across Columbia River (PM Peak Hour)

Option Package

Changes in Volumes on Affected Roadways

- Freeway System
- Arterials

Northbound Travel Demands

Along I-5 (PM Peak Hour)

Increased Trips Across the Columbia River from Major Arterials

Northbound traveling to I-5 Columbia River Bridge (PM Peak Period)

Traffic Distribution of Increased Trips Across the Columbia River

Northbound traveling to I-5 Columbia River Bridge (PM Peak Period)

Northbound Travel Demands

Along I-5 (PM Peak Hour)

Northbound Travel Demands
 Along Denver/Interstate Corridor (PM Peak Period)

Northbound Travel Demands

Along MLK Blvd. Corridor (PM Peak Period)

Traffic Distribution of Increased Trips Across the Columbia River

Northbound traveling to I-5 Columbia River Bridge (PM Peak Period)

SR 500 - east of I-5

(4-Hour PM emme/2)

Northbound Travel Demands
 Along I-5 (PM Peak Hour)

Northbound Travel Demands
Along Mill Plain/4th Plain Blvds. - west of I-5 (PM Peak Period)

Northbound Travel Demands

Along Mill Plain/4th Plain Blvds. - east of I-5 (PM Peak Period)

Northbound Travel Demands

Along Columbia/Washington Corridor - (PM Peak Period)

Northbound Travel Demands

Along SR 14 - east of I-5 (PM Peak Period)

Findings

- Additional freeway capacity is needed to address the "bottleneck" caused by the existing bridges and to serve future demand.
- Additional river-crossing capacity plus interchange improvements significantly enhance system performance compared to today and compared to 2020 priority baseline.
- Concepts with 10 freeway lanes, and concepts with 8 freeway plus arterial lanes, appear promising. Trade-offs to be evaluated in future studies should include the balance of traffic on the freeway vs. local streets.

Findings

- Concepts that split freeway traffic across the river (i.e., supplemental bridge plus existing bridge) do not perform as well as concepts that keep traffic in contiguous lanes.
- HOV utilization and performance is highly dependent on the facilities provided:
- Additional river crossing capacity is needed for HOV system continuity
- Direct access ramps should be considered at key locations (i.e., SR 500)
- Bridge design affects HOV performance (separated bridges limit access)

SR 14 - east of I-5

(4-Hour PM emme/2)

Fourth Plain Blvd. - west of I-5

(4-Hour PM emme/2)

Fourth Plain Blvd. - east of I-5

(4-Hour PM emme/2)

Mill Plain Blvd. - west of I-5

(4-Hour PM emme/2)

Mill Plain Blvd. - east of I-5

(4-Hour PM emme/2)

Main St. - south of Fourth Plain Blvd.

(4-Hour PM emmel2)

Columbia St. - south of Mill Plain Blvd.

(4-Hour PM emmel2)

Washington St. - south of Mill Plain Blvd.

(4-Hour PM emmel2)

Marine Dr. - west of I-5

(4-Hour PM emme/2)

N Portland Rd. - south of Marine Dr.

(4-Hour PM emmel2)

Columbia Blvd. - west of I-5

(4-Hour PM emme/2)

Columbia Blvd. - east of I-5

(4-Hour PM emme/2)

