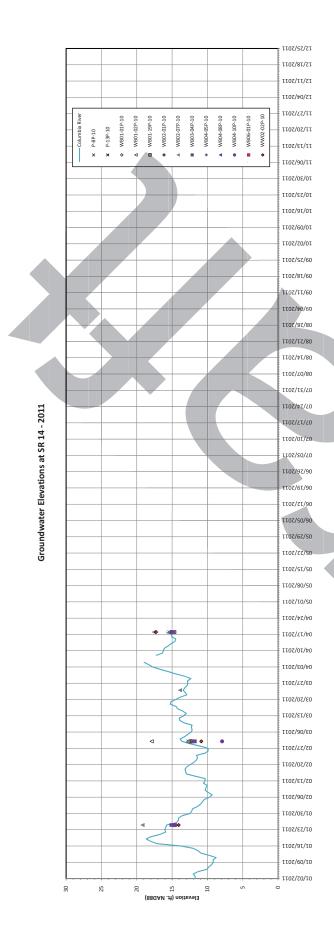
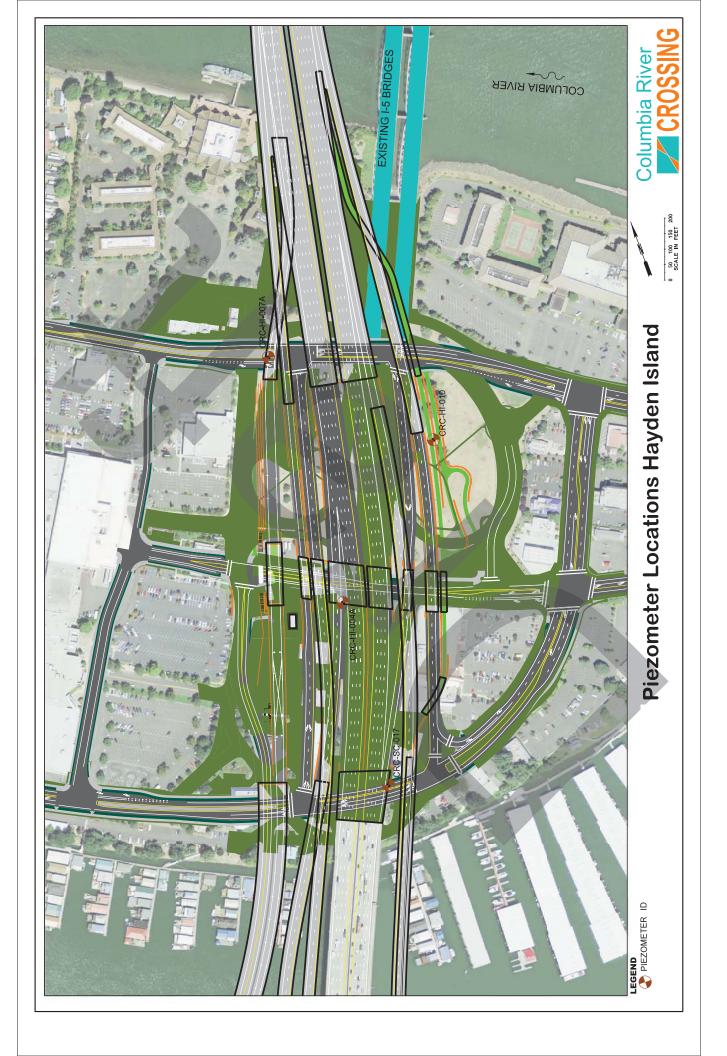
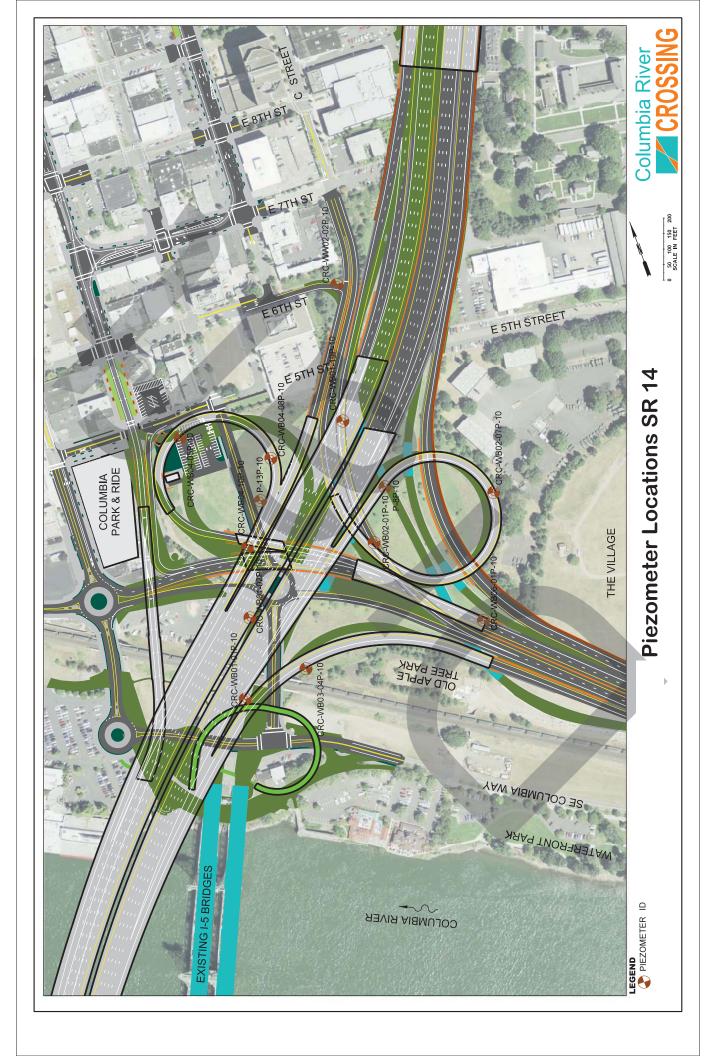

	TAMSAH DJJIJNWOA8													•													•
	SW/LF			•			_	_							•										•		
		•	•									•	•									•			•		
te	ECSI	•	•	•	•	•	•	•	•	•	•	-	•		•	•	•	•		•	•	•	•	•	•	•	
State	DECISIONS																										
es ¹ WASHINGTON	LUST																										
	ZWF/LF													_										_			
Regulatory Databases	CSCSF NEV																										
ata	CSCSL																										
	AIA			_			•										•										
nlato	281MH Retered			•			•	_							•		•										
Reg	SIAT			-										_										_			
	NPL																							•			
	INST-CONTROLS	7																									
Enderra				•			•						-		_									•			
	RCRA-CORRACTS																							•			
	ССКА-ТЗD																										
	ВСВА-ИD																	•	٠					•			
	RCRA-LQG		_		_		•							_	, 				-								
	RCRA-CESQG			•			-							_			•					•		_	•		
	STATE	В	Ю	Ю	Ю	OR	Ю	ЮВ	ОВ	Ю	В	Ю	В	Ю	В	В	ОВ	OR	ОВ	_HO	Ю	Ю	Ю	ЮН	В	ЮВ	в
																											F 3
	ESS				0										/E		_										RAG/
	ADDRESS	, BLVI	AVE		BLVI	ш	ш	ш	BLVI	ш	VE		ST.		CK AV	BLVD	BLVI	BLVD		BLVD	BLVD	BLVD	BLVD	>	BLVD		& FARRAGAT
	A	1945 N COLUMBIA BLVD		ST	1812 N COLUMBIA BLVD	8520 N KERBY AVE	3Y AVE	8501 N ALBINA AVE	1601 N COLUMBIA BLVD	8443 N KERBY AVE	9038 N DENVER AVE	2111 NE ARGYLE	1627 NE ARGYLE ST	GYLE	8501 N BORTHWICK AVE	955 N COLUMBIA BLVD	1255 N COLUMBIA BLVD	900 N COLUMBIA BLVD	NE	626 N COLUMBIA BLVD	511 N COLUMBIA BLVD	437 N COLUMBIA BLVD	570 N COLUMBIA BLVD	8135 NE UNION AV	310 N COLUMBIA BLVD	8009 N KERBY ST	
		COLL	9111 N DENVER	701 N HUNT ST	COLL	KERE	8440 N KERBY	ALBII	COLL	KERE	DEN	E ARC	E ARC	2519 NW ARGYI	BOR ⁻	OLUI	COLL	OLUI	N DENVER AVE	SOLUI	SOLUI	OLUI	SOLUI		SOLUI	KERE	7800 N DENVER
		45 N	11 N	1 N F	12 N	20 N	40 N	01 N	01 N	43 N	38 N	11 NE	27 NI	19 N/	01 N	5 N C	55 N	O N C	DEN	6 N C	1 N C	7 N C	0 N 0	35 NE	0 N C	N 60	N 00
able		19	91	70	18		84	85	16	84	90	21	16	25	85	95	12	96	z	62	51	43	57	81	31	80	78
T T						METROPOLITAN DISPOSAL & RECYCLING CORP						(Ŋ.						MAN								1
u ma						ING (00710	NG, II					ЯР	IOFF1	UNG.					ES		1
Sur		ROVALVE DIV. OF TECHNAFLOW INC				CYCL						QWEST - PORTLAND ARGYLE SOC (R00710)	BRUNDAGE-BONE CONCRETE PUMPING, INC				Ö	IG CC	NELSON VIC PROPERTY/ CARL BUD HOFFMAN FACILITY	AMERICAN AUTO RECYCLING WRECKING		s	≻		RYDER TRANSPORTATION RESOURCES		Ċ
ites		FLOV	CORF			& RE	0	EB			0	E SO	TE PI				ONZE	YCLIN	ARLE	N DI		CTOR	PERT		RESC	S INC	
als	NAME	ANH	ALLIED ROOFERS SUPPLY CORP			DSAL	PRECISION EQUIPMENT INC	NORSTAR BUSINESS CENTER			EVERGREEN STAGES LINES	RGYI	NCRE			NC.	MACADAM ALUMINUM & BRONZE CO.	REC	۲) کر	YCLIN	×	LORD BROTHERS CONTRACTORS	FAIRMONT FINANCIAL PROPERTY		ION	CENTRAL MACHINE WORKS INC.	
ateri	2	F TEO	SUP		7	DISPC	MEN	ESS (TC	Ö.	GES	ND A	E COI		NC.	I T I	MUM	NUM	PERI	REC	ERT	CON	CIAL	INC.	RTAI	NE M	
Š		IV. OI	FERS	Ñ.	RGAN	TAN D	EQUIF	JSINE	וורא ר	NUM (I STA	RTLA	BONE		NG	DPME	LUMI	TUMI	PRO	UTO	PROF	IERS	INAN	ING,	VSPO	ACHIN	444
nop		/E D	ROO	CH II	IOM-I	POLI ⁻	ION E	AR BI	I FAN	RE DF	REEN	- PO	AGE-		YCLI	EVELO	AM A	BIA A	V VIC	AN A	ORD	ROTH	NT F	PLAT	TRAN	AL M/	4
azar		VAL	LIED	WASTECH INC.	NICOLAI-MORGAN	TRO	RECIS	DRST.	BLASEN FAMILY LLC	WAYMIRE DRUM CO.	ERG	VEST	ND	SPILL	RB RECYCLING INC.	P. C. DEVELOPMENT INC.	ACAD	NUJO	CILIT	IERIC	BRADFORD PROPERTY	RD B	IRMO	ALLIED PLATING, INC.	DER	INTR/	SPILL
Р		RC	AL	W,	NK	ME	Ę	Ŋ	BL	W,	Ч	ð	BF	SP	RE	٩.	Μ¢	8	PA FA	AN	BR	9	FA	AL	R	CE	SF
Exhibit 3-12. Identified Hazardous Material Sites Summary Table	ase																				*						SPILL 7800 N DENVER
lden	Database Report ID																		5								1
12.	čř	265	266	267	269	270	271	272	273	274	275	277	278	279	280	281	282	283	284/285	286	287	288	289	290	291	292	293
it 3-	Q																										
xhib	Site ID	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238
ш																											


Notes 1 = For detailed description of databse see Appendix B; for further information on identified sites see Appendix B

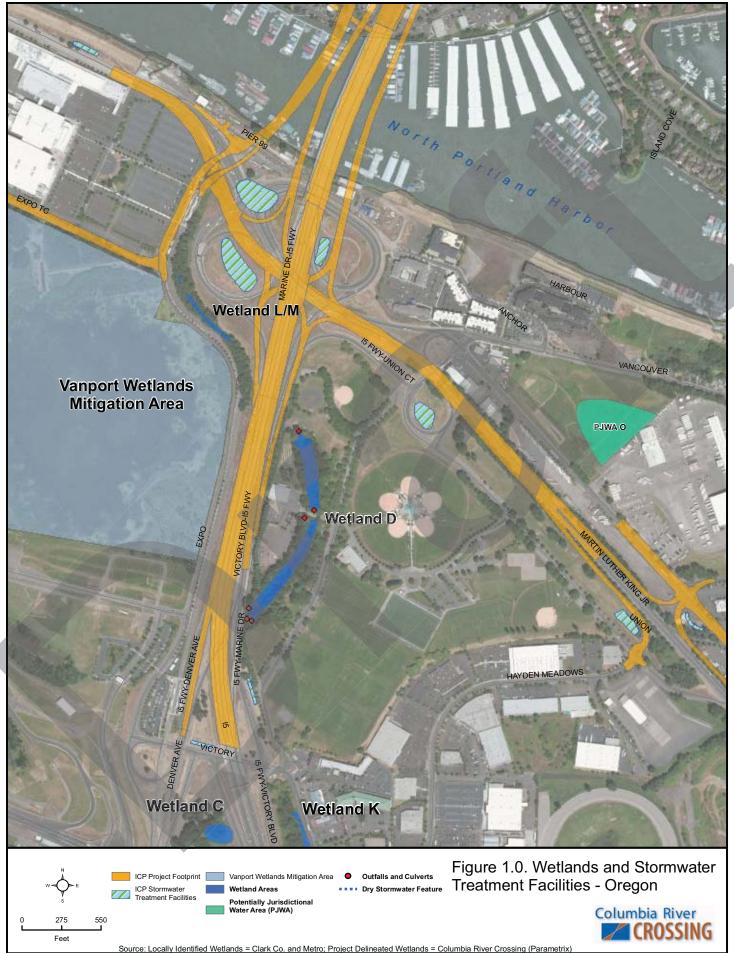
Ui:PortPojecis/Cients3012 David Evans & Assoc273 3012-004 I-5 CRC/07_FEIS TR01_Dratis/NaturalAssources/HazMattEntholis sources files/Ex_3012_004 Hazmat-Sile Summary-Table_02100.xis



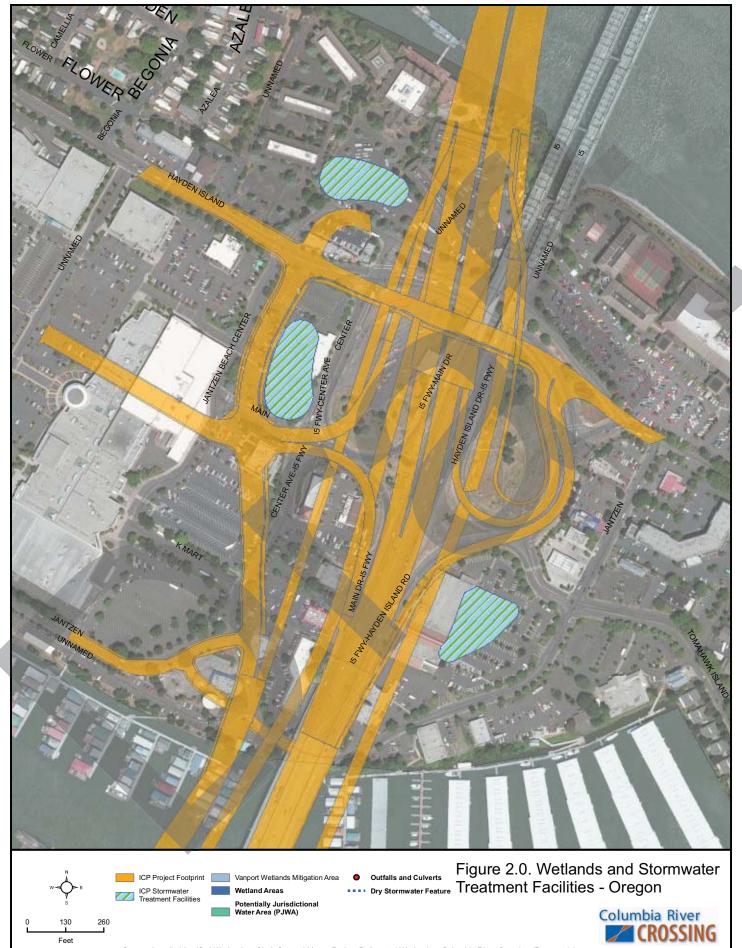


B-5

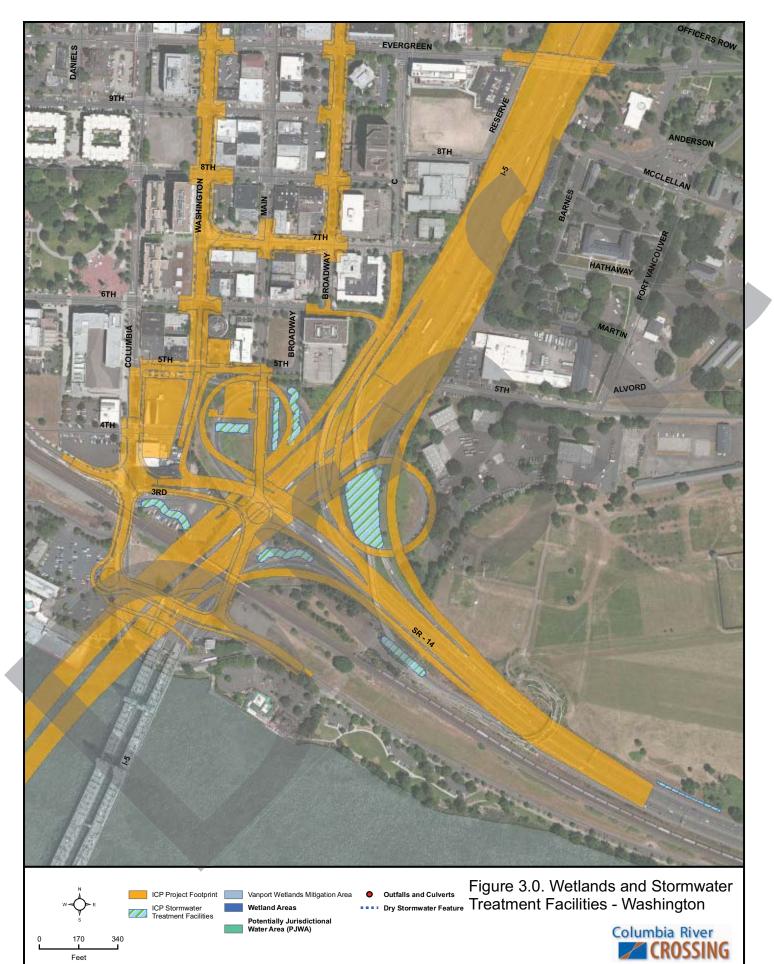
Permit No.	Year Issued	Utility Type	Applicant	Comments
4734	1955	Communications	Pacific Telephone & Telegraph Company	MP 6.24 (prior Mile Post system). Telephone cable crossing.
6142	1962	Communications	Pacific Northwest Bell	MP 307.45. U/G telephone cable.
5225	1964	Communications	Pacific Northwest Bell	MP 6.63 - 6.77 (prior Mile Post system). Telephone cable. Modified later.
11761	1967	Water	Hayden Island, Inc.	MP 308.02. 6" steel. Not shown on City of Portland data - could be abandoned.
11973	1967	Electricity	Portland General Electric	MP 307.69. U/G 11 kV crossing. Amended in Salem Permit Office.
12240	1968	Sewer	Hayden Island, Inc	MP 6.28 (prior Mile Post system). 8" welded steel pipe.
12259	1971	Communications	Pacific Northwest Bell	Location on attached map is not clear: it is likely at intersection of Hayden Island Drive and Center Avenue.
13509	1970	Water	Hayden Island, Inc.	MP 7.69 (prior Mile Post system). 12" pipe. Replaced - see Permit #30861.
13681	1970	Electricity	Portland General Electric	MP 6.59 - 6.60 (prior Mile Post system). 17kV buried cable and switch/transformer house. Current configuration not as shown on the permit.
14228	1971	Gas	Northwest Natural Gas Company	MP 307.69 - 307.99. 2" and 4" pipe.
15306	1972	Water	City of Portland	MP 307.06. 24" casing for 16" steel main.
15572	1972	Water	City of Portland	MP 307.05. 16" DIP crossing.
16216	1973	Communications	City of Portland	MP 307.48 - 307.70. Fire alarm cable suspended under Oregon Slough Bridge. Not shown for security reasons.
17675	1976	Communications	Pacific Northwest Bell	MP 308.14 - 308.16. Concrete parking area.
18599	1977	Sewer	City of Portland	MP 306.64 - 306.83. 6" DIP forcemain.
19107	1977	Gas	Northwest Natural Gas Company	MP 308.15 - 308.17. 2" steel.
20738	1979	Communications	Pacific Northwest Bell	MP 368.25. U/G cable. Mile Post is incorrect.
25437	1985	Communications	Pacific Northwest Bell	MP 307.45. U/G telephone cable and cable suspended under North Portland Harbor Bridg deck.
27148	1987	Communications	Roger's Cable Systems	MP 307.47 - 307.70. U/G TV cable and suspended cable under North Portland Harbo Bridge deck.
30693	1990	Water	City of Portland	MP 307.33 - 307.51. 16" DIP.
30861	1990	Water	City of Portland	MP 308.06 - 308.16. 12" DIP.
2BM35007	1990	Gas	Northwest Natural Gas Company	MP 307.32 - 307.47. 8" steel line.
2BM35178	1992	Sewer	City of Portland	MP 307.70. 10" PVC forcemain crossing.
2BM35338	1993	Communications	Red Lion Inn	MP 308.00. Record existing telephone cable.
2BM35356	1994	Communications	Columbia Cable of Washington	MP 307.99 - 308.38. 2" conduit with fiber-optic cable across Columbia River Bridge. Extends onto Washington side. Shown as a submarine crossing at lift span.
2BM35638	1996	Sewer	City of Portland	MP 307.16. 20" and 30" forcemain.
2BM35797	1997	Communications	TCI	MP 307.99 - 308.38. Temporary permit for installing fiber-optic cable on Columbia River Bridge. Extends onto Washington side.


Permits Issued by ODOT for I-5 Right-of-Way

Permit No.	Year Issued	Utility Type	Applicant	Comments
2BM35800	1997	Communications	All Phase Communications	MP 307.80 - 307.99. U/G fiber-optic cable.
2BM35801	1997	Communications	All Phase Communications	MP307.99 - 308.38. PVC conduits on Columbia River Bridge for fiber-optic cable. Extends onto Washington side, and includes vault and pull boxes.
2BM35831	1997	Communications	All Phase Communications	MP 307.46 - 307.70. Fiber-optic cable suspended under Oregon Slough Bridge.
2BM35873	1997	Communications	GST Telecom	MP 307.30. U/G fiber-optic cable. Mile Post is incorrect – cable located on Pier 99 Street.
2BM36005	1998	Water	City of Portland	MP 307.45. 8" DIP.
2BM36010	1998	Communications	Electric Lightwave	MP 307,48. O/H fiber-optic line on PP&L poles
2BM36073	1999	Communications	Paragon Cable	MP 307.46 - 307.47. U/G fiber-optic & TV cable.
2BM36236	2000	Electricity	Portland General Electric	MP 308.00. U/G mainline backbone feeder.
2BM36242	2000	Electricity	Portland General Electric	MP 308.00. 4" & 6" U/G power conduit.
2BM36281	2000	Communications	Hayden Corner	MP 308.00. Replace traffic loop detector - loops not shown on drawings.
2BM36614	2002	Water	Doubletree Hotel	MP 308.00. Connection to ODOT water line. Insufficient information to verify location. Private connections not shown on the drawings.
2BM36829	2003	Communications	Qwest	MP 307.71. U/G 2" service conduit. Service connections not shown on drawings.
2BM37005	2005	Communications	Qwest	MP 307.71. U/G telephone cable.


Permit No.	Year Issued	Utility Type	Applicant	Comments
FRANCHISES				
	1994	Communications	Columbia Cable of Washington	MP 0.00 - 0.17. See ODOT Permit # 2BM35356.
	1997	Communications	All Phase Communications	See ODOT Permit # 2BM35801.
	1997	Communications	ТСІ	MP 0.00 - 0.23. See ODOT Permit # 2BM35797.
6423	1980	Electricity	Clark County PUD	MP 0.27. Existing 12.5kV O/H crossing. Franchise Agreement (expires 2005).
6423	1980	Electricity	Clark County PUD	MP O.53. Existing guy wire and neutral wire O/H crossing. Franchise Agreement (expires 2005). No longer there.
6423	1980	Electricity	Clark County PUD	MP 0.65. Existing 12.5kV O/H crossing. Franchise Agreement (expires 2005).
6423	1980	Electricity	Clark County PUD	MP 0.93. Existing 12.5kV O/H crossing. Franchise Agreement (expires 2005).
6423	1980	Electricity	Clark County PUD	MP 1.23. Existing 2 - 6" conduits without cable Franchise Agreement (expires 2005).
6423	1980	Electricity	Clark County PUD	MP 1.82, Existing 12.5kV O/H crossing. Franchise Agreement (expires 2005).
6423	1980	Electricity	Clark County PUD	MP 2.02. Existing 69kV O/H crossing. Franchise Agreement (expires 2005).
6644	1984	Communications	Pacific Northwest Bell Telephone Co.	MP 0.54. O/H telephone cable crossing. Franchise Agreement (expires 2009). Crossin no longer exists.
6644	1984	Communications	Pacific Northwest Bell Telephone Co.	MP 0.84. O/H telephone cable crossing. Franchise Agreement (expires 2009). Crossin is on bridge.
6644	1984	Communications	Pacific Northwest Bell Telephone Co.	MP 1.55. U/G telephone cable crossing encased in a 30" steel pipe. Franchise Agreement (expires 2009.
6644	1984	Communications	Pacific Northwest Bell Telephone Co.	MP 1.56. U/G telephone cable crossing. Franchise Agreement (expires 2009).
6644	1984	Communications	Pacific Northwest Bell Telephone Co.	MP 1.98. O/H telephone cable crossing. Franchise Agreement (expires 2009). Crossin is actually at 33 rd (MP 2.02).
6644	1984	Communications	Pacific Northwest Bell Telephone Co.	MP 0.29 - 0.32. U/G telephone cable crossing Franchise Agreement (expires 2009).
6644	1991	Communications	Pacific Northwest Bell Telephone Co.	MP 1.55 - 1.62. U/G telephone cable crossing within an existing duct. Franchise Agreement (expires 2009).
6644	1991	Communications	Pacific Northwest Bell Telephone Co.	MP 1.56 - 1.62. U/G telephone cable crossing within existing ducts. Franchise Agreement (expires 2009).
40006	1985	Gas	Northwest Natural Gas Company	MP 0.25. 6" steel. Franchise Agreement (expires 2010).
40006	1985	Gas	Northwest Natural Gas Company	MP 1.28 - 1.29. 4" steel. Franchise Agreemen (expires 2010).
40025	1987	Water	City of Vancouver	MP 0.25. 6" DIP. Franchise Agreement (expires 2012).
40025	1987	Water	City of Vancouver	MP 0.54 - 0.56. 12" DIP. Franchise Agreemer (expires 2012).
40025	1987	Water	City of Vancouver	MP 0.58 - 0.60. 12" DIP. Franchise Agreemer (expires 2012).

_	Permit No.	Year Issued	Utility Type	Applicant	Comments
_	40025	1987	Water	City of Vancouver	MP 1.00 - 1.04. 12" DIP. Franchise Agreement (expires 2012).
	40025	1987	Water	City of Vancouver	MP 1.03 - 1.08. 8" pipe. Franchise Agreement (expires 2012). Partly abandoned.
	40025	1987	Water	City of Vancouver	MP 1.03 - 1.04. 6" pipe. Franchise Agreement (expires 2012).
	40025	1987	Water	City of Vancouver	MP 2.33 - 2.37. 8" DIP. Franchise Agreement (expires 2012).
	40025	1987	Water	City of Vancouver	MP 2.36 - 2.38. 8" DIP with a 2" galvanized pipe. Franchise Agreement (expires 2012).
	40025	1987	Water	City of Vancouver	MP 1.30. 20" DIP crossing not previously described. Franchise Agreement (expires 2012).
	40025	1987	Water	City of Vancouver	MP 1.68. 6" pipe crossing in 36" culvert not previously described. Franchise Agreement (expires 2012). Abandoned.
	40025	1987	Water	City of Vancouver	MP 1.83. 12" DIP crossing in 42" culvert not previously described. Franchise Agreement (expires 2012).
	40025	1987	Water	City of Vancouver	MP 1.97. 10" DIP crossing in 42" culvert not previously described. Franchise Agreement (expires 2012).
	40058	1988	Sewer	City of Vancouver	MP 0.26. Existing 8" CSP. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 0.43 - 0.44. Existing 8" CSP. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 0.44 - 0.45. Existing 8" CSP. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 0.56 - 0.58. Existing 33" pipe. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 1.03. Existing 8" pipe. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 1.08. Existing 8" pipe. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 1.19 - 1.26. Existing 10" pipe. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 1.30 - 1.37. Existing 8" pipe. Franchise Agreement (expires 2013). Abandoned.
	40058	1988	Sewer	City of Vancouver	MP 1.68. Existing 14" pipe. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 1.68. Existing 12" pipe. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 2.25 - 2.29. Existing 8" pipe. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 2.29 - 2.34. Existing 8" pipe. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 2.34 - 2.35. Existing 27" pipe. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 2.31 - 2.37. Existing 8" pipe. Franchise Agreement (expires 2013).
	40058	1988	Sewer	City of Vancouver	MP 2.41 - 2.44. Existing 12" pipe. Franchise Agreement (expires 2013).
	40118	1994	Communications	Columbia Cable of Washington	MP 0.00 - 0.26. 2" duct with fiber-optic cable on Columbia River Bridge. Franchise Agreement (expires 2019).


Permit No.	Year Issued	Utility Type	Applicant	Comments
40118	1998	Communications	TCI	MP 0.00 - 0.26. 2" duct with fiber-optic cable. High level crossing of bridge lift span. Franchise Agreement (expires 2019).
40118	1998	Communications	ТСІ	MP 2.02. O/H fiber-optic cable crossing. Franchise Agreement (expires 2019).
40151	1997	Communications	Electric Lightwave	MP 0.26 - 0.27. O/H fiber-optic cable crossing. Franchise Agreement (expires 2022).
40151	1997	Communications	Electric Lightwave	MP 2.02. O/H fiber-optic cable crossing. Franchise Agreement (expires 2022).
40161	1998	Communications	GTE	MP 1.82. O/H fiber-optic cable crossing. Franchise Agreement (expires 2023).
PERMITS				
8828	1983	Communications	Cox Cable	MP 0.94. O/H CATV cable crossing. See #11072.
8842	1984	Communications	Cox Cable	MP 1.84. Two CATV cables within 29th Street structure.
8868	1983	Electricity	Clark County PUD	MP 0.66 - 0.69. 4" PVC duct with 12.5kV cable
9749	1984	Communications	City of Vancouver	MP 1.03 - 1.05. U/G cable in PVC duct.
9278	1985	Communications	Cox Cable	MP 0.79 - 0.84. U/G CATV cable parallel to I-5 in 2" PVC duct.
11013	1994	Communications	Clark Public Utilities	MP 0.94 - 0.95. O/H fiber-optics cable lashed to neutral wire authorized under Franchise #6423.
11072	1995	Communications	Columbia Cable of Washington	MP 0.94. O/H CATV cable crossing.
11466	1996	Communications	тсі	MP 1.27 - 1.28. 2 - 2" PVC ducts. One is empty and one has a CATV cable.
U1196	2001	Communications	City of Vancouver	MP 1.03 - 1.05. U/G 3" duct with fiber-optic cable.
U1271	2002	Communications	Clark County Dept. of Information Technology	MP 0.85. 3 - 1.25" fiber-optic cable ducts.
U1315	2002	Communications	Clark Public Utilities	MP 0.26 - 0.28. O/H fiber-optic cable crossing.
U1444	2004	Communications	City of Vancouver	MP 1.58. Fiber-optic cables.

nalvsis by J. Koloszar: Analvsis Date: 31 Oct 2012: File Name: Exhibit3 6 3 8 TF255.mxd

Source: Locally Identified Wetlands = Clark Co. and Metro; Project Delineated Wetlands = Columbia River Crossing (Parametrix) Analysis by J. Koloszar; Analysis Date: 31 Oct 2012; File Name: Exhibit3 6 3 8 TF255.mxd

Source: Locally Identified Wetlands = Clark Co. and Metro; Project Delineated Wetlands = Columbia River Crossing (Parametrix) Analysis by J. Koloszar; Analysis Date: 31 Oct 2012; File Name: Exhibit3 6 3 8 TF255.mxd

Source: Locally Identified Wetlands = Clark Co. and Metro; Project Delineated Wetlands = Columbia River Crossing (Parametrix) Analysis by J. Koloszar; Analysis Date: 31 Oct 2012; File Name: Exhibit3 6 3 8 TF255.mxd

APPENDIX L

Project Description – Initial Construction Program

1. Project Description – Initial Construction Program (ICP)

1.1 General

The Record of Decision for the Columbia River Crossing Program identifies the transportation improvements of the selected alternative for the 5-mile project corridor, including:

- A new river crossing over the Columbia River and I-5 highway improvements.
- Improvements to seven interchanges, from south to north: Victory Boulevard, Marine Drive, Hayden Island, SR-14, Mill Plain, Fourth Plain and SR 500. Related enhancements to the local street network.
- Three new structures over North Portland Harbor associated with I-5, and one new multi-modal bridge carrying light rail transit, local traffic, pedestrians and bicyclists.
- A variety of bicycle and pedestrian improvements throughout the project corridor. A multiuse path connecting to the existing system. The path would allow users to travel from north Portland, over Hayden Island and the Columbia River into downtown Vancouver.
- Extension of light rail transit from the Expo Center in Portland to Clark College in Vancouver and associated transit improvements. Transit stations would be built on Hayden Island, in downtown Vancouver, and a terminus near Clark College. Three park and rides are to be built, Columbia (near the SR 14 interchange), Mill (in uptown Vancouver) and Central (near Clark College). Improvements would be made to the tracks on the Steel Bridge. Also, bus route changes and the expansion of the Ruby Junction light rail transit maintenance facility.
- Transportation demand and system management measures to be implemented with the project, including the use of tolls, subject to the authority of the Washington and Oregon Transportation Commissions.

(A detailed description of the selected alternative is included in Chapter 2 of the Final Environmental Impact Statement.)

The construction of the selected alternative will be phased to match available funding while providing significant transportation benefits. The first construction phase is referred to as the Initial Construction Program (ICP). The ICP includes the following multi-modal elements:

- The new river crossing over the Columbia River and the I-5 highway improvements, including improvements to three interchanges, as well as associated enhancements to the local street network.
- Extension of light rail from the Expo Center in Portland to Clark College in Vancouver, and associated transit improvements, including transit stations, park and rides, bus route and station changes, and expansion of a light rail transit (LRT) maintenance facility.
- Upgrades and modifications to the Steel Bridge and transit command center.
- Purchase of 19 light rail vehicles (LRV), public art and other transit-related procurements.

- Bicycle and pedestrian improvements throughout the project corridor that connect to the transit system.
- Toll system for the river crossing.
- Transportation demand and system management measures to be implemented with the project.

The ICP will require multiple construction contract bundles or packages (see attached figure). The following narrative contains a description of each construction package.

1.2 ICP Construction Packages (see attached figure)

1.2.1 River Crossing (RC)

- Construct new northbound and southbound bridges over the Columbia River. The existing Interstate (I-5) Bridge structures will be replaced by two parallel bridges slightly downstream and to the west of the existing crossing. The proposed bridge type is a composite deck truss in which the diagonal steel members allow for an open-sided, covered passage for the light rail guideway and multi-use path. The southbound bridge will carry highway traffic on the upper bridge deck with a two-way light rail guideway on the lower bridge deck. The northbound bridge will carry highway traffic on the upper bridge deck and a bicycle and pedestrian path on the lower deck.
- Construct LRT approach structures to the Columbia River Bridge from Hayden Island and Vancouver.
- On the lower deck of the southbound bridge, the Oregon LRT approach structure, and the Washington LRT approach structure, construct and install all transit civil, track, and systems components. All track on the main river bridge and approach structures will be direct fixation. The maximum grade will be 6%, on the Washington LRT approach structure from the BNSF crossing to touchdown at 5th Street and Washington Street in Vancouver.
- Construct the I-5 mainline from Columbia River Bridge to North Portland Harbor Bridge.
- Reconstruct ramp connections on the east and west sides of I-5 on Hayden Island in a configuration similar to the existing ramp connections.
- Reconstruct various local roads on Hayden Island.
- Reconstruct SR-14 connections to and from I-5 and downtown Vancouver.
- Construct a C Street entrance ramp to I-5.
- Reconstruct the I-5 mainline from the Columbia River Bridge to Evergreen Boulevard.
- Construct retaining walls on the east and west sides of the I-5 mainline.
- Construct a replacement Evergreen Boulevard Bridge over I-5.
- Construct the community connector over I-5 near the Evergreen Boulevard Bridge.
- Construct a replacement McLoughlin Boulevard Bridge with transitions on I-5 to accommodate the LRT that passes beneath I-5 at this point.
- Reconstruct portions of the Mill Plain Boulevard entrance ramp to I-5 southbound.
- Reconstruct portions of the I-5 northbound exit ramp to Mill Plain Boulevard.
- Reconstruct portions of Columbia Street, Columbia Way, Main Street, and 5th Street.
- Construct a shared-use path from the Columbia River Bridge to Columbia Way.
- Reconstruct portions of the southbound off-ramp to Fourth Plain Boulevard.

- Reconstruct portions of Fourth Plain Boulevard and the ramp terminal intersections on the east side of I-5.
- Construct an off-ramp from I-5 northbound to Fourth Plain Boulevard.
- Construct shared-use path connections from the Columbia River Bridge to connect to new and existing bicycle and pedestrian facilities on Hayden Island.

1.2.2 Bridge Removal (BR)

• Demolish the existing Interstate (I-5) Bridge structures.

1.2.3 Mainland Connector (MC)

- Elevate, realign, and reconstruct Marine Drive and modify the Marine Drive ramp terminal intersection and connecting ramps. Elevating Marine Drive provides a grade separation of the LRT from the local road mainland connector bridge to Hayden Island.
- Construct a mainland connector bridge to Hayden Island over North Portland Harbor. The North Portland Harbor (NPH) multimodal bridge will accommodate local vehicle traffic, LRT, and bicycle and pedestrian facilities and will connect to a new local street on Hayden Island and to N. Expo Road on the mainland.
- Construct a new driveway on the extension of N. Expo Road as a replacement access point for Diversified Marine Inc. and Ross Island Sand and Gravel.
- Realign the shared-use path adjacent to North Portland Harbor to go over the LRT line and the connecting street between the mainland and Hayden Island, running parallel and adjacent to Marine Drive. On either side of the grade separation, the path will reconnect to the existing path.

1.2.4 Marine Drive (MD)

- Construct a new single point interchange at Marine Drive and I-5 and associated ramps. This will require demolition of the existing structure that crosses I-5 and construction of a new structure over I-5 to carry Marine Drive. The Marine Drive alignment constructed with the mainland connector bridge will be adjusted in grade and alignment to match the new single point interchange. (Note: The MC package will be constructed first. The alignment of Marine Drive in the vicinity of the LRT and the local road will be slightly adjusted in the MD package. The structures constructed in the MC for the LRT and the local road will remain, with no disruption to light rail or traffic operations.)
- Reconstruct the connections from Marine Drive to Union Court and from Vancouver Way to Marine Drive.
- Construct a road on the south end of the Expo Center between North Expo Road and Force Avenue and thus provide a local route between Hayden Island and Marine Drive.
- Widen I-5 southbound from the North Portland Harbor bridge to a point just south of the Victory Boulevard crossing to provide an additional lane.
- Widen I-5 northbound from the Victory Boulevard crossing to the North Portland Harbor Bridge to accommodate the northbound Denver Street entrance ramp as an auxiliary lane.
- Re-stripe I-5 and reallocate the width of the North Portland Harbor bridge to allow for an additional southbound lane.
- Relocate the function of the North Portland Harbor shared-used path to the sidewalk and bike lanes on the new mainland connector multimodal bridge.

1.2.5 Oregon Transit (OT)

- Construct a double-track LRT guideway to extend from the existing Expo Center MAX station to the new multimodal mainland connector bridge over the North Portland Harbor and across Hayden Island. There will be accommodation for an at-grade crossing at Vancouver Way, a new street that is part of the larger Columbia River Crossing Program. This signalized crossing will include a signal gate on both the eastbound and westbound intersection approaches. On Hayden Island, the LRT guideway will be partially on fill and partially on structure. The alignment will be roughly parallel to the I-5 alignment. On the north end of Hayden Island, the light rail alignment will rise in elevation on structure until it transitions onto the lower deck of the new westernmost bridge (southbound I-5) over the Columbia River. The total distance of the LRT guideway between the Expo MAX station and the Columbia River Bridge approach structure is just over a half-mile.
 - The grade of the track upon leaving the Expo MAX Station will be 6%. On the NPH bridge, the grade from the south abutment to the approximate midpoint will be 5%, and then the grade will be 2% as the alignment descends to Hayden Island, before flattening out through the station and ultimately transitioning to the lower deck of the main river crossing bridge (with a maximum grade of 1%).
 - The exclusive (LRV only) guideway is a mix of ballasted track and direct fixation (on structure) from the Expo MAX station to the lower deck of the main river crossing bridge. At Vancouver Way, ballasted track with modular grade crossing panels will be constructed.
- Construct a bridge over the A Street to I-5 South (A-5S) on-ramp and to accommodate the future Tomahawk Island Drive.
- Build the Hayden Island transit station on structure as a center platform station providing the following amenities:
 - Minimum platform length of 200 feet and platform width of ± 20 feet
 - A covered ticket vending machine at each platform access
 - Wind shelter and canopy incorporated into the structure as well as standard amenities, signage, and public art
 - Elevator, ramps, and stairs for access to and from adjacent roadways

1.2.6 Washington Transit (WT)

• At the beginning of the LRT alignment in Washington, at the intersection of Washington Street and 5th Street, install a signal gate for both eastbound and westbound vehicle traffic. The doubletrack LRT guideway will be in the center of the street between 5th and 7th Streets. The intersections at 6th Street and Washington Street and 7th Street and Washington Street will be signalized (both traffic and LRT). At 7th Street, the light rail alignment will transition to a couplet, with the northbound guideway on the west side of Broadway Street and the southbound guideway on the east side of Washington Street. At 17th Street, the two guideways will join and turn east for approximately nine blocks. At G Street, the guideway on 17th Street will angle north one block to McLoughlin Boulevard. There will be a signal gate on McLoughlin Boulevard for eastbound traffic. The guideway will then cross under I-5 to run down the center of McLoughlin Boulevard to the Central Park terminus station and park-and-ride structure east of I-5.

- Convert 7th Street to one-way traffic eastbound between Washington and Broadway Streets, with traffic and interconnected LRT signals installed at Main Street and Broadway Street. The profile grades along 7th Street will vary from 0% to 5%.
- Convert Broadway Street to two-lane traffic northbound, with traffic and interconnected LRT signals installed at 8th, 9th, Evergreen, 11th, 12th, 13th, Mill Plain, 15th, 16th, and 17th Streets. The LRT guideway will be constructed on the west side of Broadway Street, with the profile grades along Broadway Street varying from 0% to 5%.
- On 17th Street, construct the double-track LRT guideway to run down the center of the street, with eastbound traffic on the south side of the street and westbound traffic on the north side of the street. Profile grades along 17th Street vary from 0% to 4%. Traffic and interconnected LRT signals will be installed at intersections with Washington, Main, C, D, E, and F Streets.
- On McLoughlin Boulevard, roughly in between the I-5 underpass and a new station to the east, construct the double-track LRT guideway to run down the center of the street, with eastbound traffic on the south side of the street and westbound traffic on the north side of the street. Profile grades on McLoughlin Boulevard will vary from 0% to 5%. There will be a traffic and interconnected LRT signal installed at the entrance to the Central Park and Ride.
- On Washington Street, construct the guideway on the west side of the street, with traffic and interconnected LRT signals installed at 16th, 15th, Mill Plain, 13th, 12th, 11th, Evergreen, 9th, 8th, and 7th Streets. The profile grades on Washington Street will vary from 1% to 5%.
- All track in Washington will be embedded t-rail.
- Construct LRT stations, designed not to preclude BRT, along the transit guideway at:
 - 6th and Washington Street Station located within vacated Washington Street between 5th and 6th Streets, and servicing the Columbia Park and Ride (see section 1.2.6, below). This station shall have co-located side platforms with northbound and southbound rail between them. The platforms shall provide:
 - A minimum platform length of 190 feet and a minimum platform width of 12 feet.
 - A covered ticket vending machine at each platform access.
 - Two shelters per platform with standard amenities, signage, and public art.
 - Evergreen and Broadway Platform located on the west side of Broadway Street between 9th Street and Evergreen Street
 - 16th and Broadway Platform located on the west side of Broadway Street between 15th Street and 16th Street
 - 9th and Washington Platform located on the east side of Washington Street between 9th Street and Evergreen Street
 - 15th and Washington Platform located on the east side of Washington Street between 15th Street and 16th Street. This platform adjoins and provides access to the Mill Park and Ride.
 - These platforms shall provide:
 - A minimum platform length of 190 feet (200 feet at 15th Street and Washington Street) and a minimum platform width of 12 feet.
 - An adjacent sidewalk of 7.5 feet.
 - A covered ticket vending machine at each platform access.

- Two shelters per platform with standard amenities, signage, and public art.
- Central Station located at the end of line on McLoughlin Boulevard. This station provides access to the Central Park and Ride and a major bus transfer location and has a center platform. The platform shall provide:
 - A minimum platform length of 200 feet and a minimum platform width of 17.5 feet.
 - A covered ticket vending machine at each platform entrance and accommodation for future covered vending machines at or near the park-and-ride structure.
 - Four shelters per platform with standard amenities, signage, and public art.
- Construct full-block bus stops along the LRT alignment or adjacent to significant developed improvements at the following locations:
 - 7th and Main Streets.
 - Broadway and 9th Streets.
 - Broadway and Evergreen Streets.
 - Broadway and 13th Streets.
 - \circ $\;$ Broadway and 16th Streets.
 - Main and 15th Streets.
 - Washington and 12th Streets.
 - Washington and 8th Streets.
 - Central Station.
- Construct two surface parking lots, at SR-14 and at 5th Street (Smith Tower). The SR-14 lot will be located within the perimeter of the SR-14 on-ramp to I-5 North and will contain approximately 50 stalls. The 5th Street lot will be located north of 5th Street and east of the 6th and Washington Street LRT station. This lot is a reconstruction of an existing parking lot at the same location and will contain a minimum of 17 stalls.

1.2.7 Park and Rides (PR)

- Construct three park-and-ride garages, distributing a minimum of 2,900 spaces, needed for the project based on ridership demand models, as follows:
 - Columbia Park and Ride located between Columbia Street and Washington Street and between 4th Street and 5th Street, and includes retail/office space frontage facing Columbia Street. Primary ingress and egress is on 5th Street at the north end of the structure. This park and ride will provide approximately 570 auto parking spaces and 34 bicycle parking spaces, and will have five floors and an exposed height of 68.5 feet.
 - Mill Park and Ride located between 15th and 16th Streets and between Washington Street and Main Street, and includes retail/office space frontage on both Main Street and Washington Street. Washington Street will also have a C-TRAN Customer Service Center and parking on 16th Street to accommodate paratransit vehicles. Vehicles can enter from 15th and 16th Streets, but can exit only onto 16th Street. This park and ride will provide approximately 420 auto parking spaces and 30 bicycle parking spaces, and will have five floors and an exposed height of approximately 60 feet.

- Central Park and Ride located east of I-5, north of McLoughlin Boulevard, and across from the Marshall Community Center. One access is provided via a loop road, which provides direct access to and from Fourth Plain Boulevard and the I-5 access ramps at the interchange. The loop road wraps around the east side of the building and passes through the south end of the garage before returning north to Fourth Plain Boulevard. The garage can also be accessed via an entrance from McLoughlin Boulevard. This park and ride will provide approximately 1,910 auto parking spaces and 81 bicycle parking spaces, and will have five floors and an exposed height of 55.5 feet. A C-TRAN shared safety and security and Vancouver police mini-station will be included at this location as well as an operator break room located outside of the structure near the terminus station.
- Construct access roads and two bridges near the Central Park and Ride to grade-separate ingress and egress to the parking facility.

1.2.8 Transit Systems (TS)

- The Transit Systems package will provide power, signalization, and communications capability along the entire light rail alignment and will be composed of the following primary system elements:
 - 2.9 miles of light rail extension (power, signals, and communications infrastructure) of the existing MAX system.
 - Three new 1-megawatt substations and three new combined signals/communications buildings at the following locations:
 - Next to Hayden Island Station off Tomahawk Island Drive.
 - Southeast of 6th Street/Washington Avenue Station near the 5th Street parking lot.
 - Near the intersection of 17th and G Streets just south of McLoughlin Boulevard.
 - One communications room inside the Mill Park and Ride.
 - One signals room inside the Mill Park and Ride.

1.2.9 Transit Other (TO)

1.2.9.1 Ruby Junction Yard and Maintenance Facility Expansion

• To accommodate storage of the 19 additional light rail vehicles (LRVs) associated with the ICP, the Ruby Junction Yard and Maintenance Facility in Gresham, Oregon, will be expanded. This expansion will be in conjunction with an existing expansion project to accommodate additional LRVs as part of the Portland Milwaukie Light Rail (PMLR) project. Improvements include storage for the new LRVs and other maintenance material, expansion of LRV maintenance bays, and expanded parking for additional personnel.

1.2.9.2 Steel Bridge Modifications

• The Steel Bridge, located near the Rose Quarter in downtown Portland, carries all of the light rail transit lines within TriMet's system over the Willamette River. To accommodate the additional LRVs associated with the ICP, the Steel Bridge will be modified to increase throughput over the

bridge by raising the maximum crossing speed of LRVs from 10 miles per hour to 15 miles per hour. Specifically, the modifications are as follows:

- Grind the transit rails within the track bed to remove the lift joint **bumps**, rail corrugation, and any rough field welds.
- Install a vibration pad under the existing signal case on the lift span to dissipate vibration.
- Stiffen the overhead catenary system brackets to allow for greater impact as the catenary transfers from the fixed span to the movable span.
- Adjust signals for light rail transit and traffic at NW Everett Street and N Interstate Avenue to accommodate higher speeds.

1.2.9.3 Light Rail Vehicle Procurement

• To accommodate the additional passengers that have been identified for the ICP, 19 new LRVs will be procured. This procurement is planned to use an option clause associated with the PMLR project.

1.2.9.4 Command Center Upgrades/Modifications

• The TriMet command center at SE Center Street in Portland will be upgraded and modified to account for the light rail extension to Vancouver. This will include a number of hardware and software upgrades to the existing train control system.

1.3 Tolling

• Tolling cars and trucks that use the I-5 river crossing will be used to help fund the ICP and to encourage the use of alternative modes of transportation. A variable toll will be applied on vehicles using the I-5 crossing. Tolls will vary by time of day, with higher rates during peak travel periods and lower rates during off-peak periods. Medium and heavy trucks will be charged a higher toll than passenger vehicles. Tolls will be collected using an electronic toll collection system, so that toll collection booths will not be required.

1.4 Transportation Demand Management and Transportation System Management

- Implement physical features and operational elements as part of the Columbia River Crossing Program that enhance opportunities for the region to achieve its Transportation Demand Management (TDM) goals by promoting other modes to fulfill more of the travel needs in the project corridor. These include:
 - A new light rail line with connections to express bus and feeder routes operated by C-TRAN and TriMet.
 - Modern bicycle and pedestrian facilities that accommodate more bicyclists and pedestrians, and that improve connectivity, safety, and travel time.
 - Park-and-ride facilities.
 - A variable toll on the highway crossing.

- Implement facilities and equipment that could help existing or expanded Transportation System Management (TSM) programs maximize the capacity and efficiency of the system. These could include:
 - Replacement or expanded variable message signs or other traveler information systems.
 - Continued incident response capabilities.
 - Expanded traveler information systems with additional traffic monitoring equipment and cameras.

Initial Construction Program (ICP)

STORMWATER DESIGN REPORT

DRAFT REPORT

VOLUME II: COLUMBIA SLOUGH WATERSHED

Highway	State	Location
Interstate 5	Oregon	MP 306.5 to MP 308.4

October 2012

Title VI

WSDOT ensures full compliance with Title VI of the Civil Rights Act of 1964 by prohibiting discrimination against any person on the basis of race, color, national origin or sex in the provision of benefits and services resulting from its federally assisted programs and activities. For questions regarding WSDOT's Title VI Program, you may contact the Department's Title VI Coordinator at (360) 705 7098.

Americans with Disabilities Act (ADA) Information

If you would like copies of this document in an alternative format – large print, Braille, cassette tape, or on computer disk, please call (360) 705-7097. Persons who are deaf or hard of hearing, please call the Washington State Telecommunications Relay Service, or Tele-Braille at 7-1-1, Voice 1-800-833-6384, and ask to be connected to (360) 705-7097.

Reasonable accommodations in Oregon call: (503) 731-3490.

¿Habla usted español? La informacion en esta publicación se puede traducir para usted. Para solicitar los servicios de traducción favor de llamar al (503) 731-3490.

Signature Sheet

Stormwater Design Report

VOLUME II - COLUMBIA SLOUGH WATERSHED

Designed By:

Carolyn Sourek, EIT

Signature	Date
Laurie Line, P.E.	
Signature	Date
Submitted By:	
Roger Kitchin, P.E., P.Eng.	
Signature	Date
Reviewed By:	
Devin Reck, EIT. (for Washington State)	
Signature	Date
Bruce Council, P.E. (for Oregon)	
Signature	Date

TABLE OF CONTENTS

1.	. Ілті	RODUCTION	1-1
	1.1	Overview – Columbia River Crossing Project	1-1
	1.2	Scope – Columbia River Slough Watershed	
	1.3	Datum	
2	. Exis	STING CONDITIONS	2-1
	2.1	Project Site	
	2.2	Existing Drainage Systems	2-1
	2.3	Existing Drainage Basins	2-2
	2.4	Soils	
	2.4.	1 Infiltration	2-15
	2.4.	2 Groundwater	 2-15
	2.4.	3 Aquifers	 2-15
	2.4.	4 Wetlands	 . 2-15
	2.5	Existing Outfalls	2-15
	2.6	Land Use	2-16
	2.7	Utilities	2-16
	2.8	Climate	2-16
3	. Des	SIGN STANDARDS	3-1
	3.1	Design Criteria	
	3.2	Stormwater Management Guidelines	
	3.3	Other Requirements	
		1 Oil Control	
	3.4	Pipe Alternatives	
	3.5	Downstream Analysis	
4.		VELOPED CONDITIONS	
	4.1	Proposed Drainage Sub-Basins	 4-1
5	. Hyr	DROLOGIC AND HYDRAULIC DESIGN	 5-1
	5.1	Flow Control	 5-1
	5.2	Runoff Treatment Design	 5-1
	5.3	Water Quality Treatment BMPs	 5-2
	5.3.	1 Water Quality Facility CS-B	 5-3
	5.3.	2 Water Quality Facility CS-C	 5-4
	5.3.	3 Water Quality Facility CS-D	 5-4
	5.3.	4 Water Quality Facility CS-ICP-E	 5-5
	5.3.	5 Water Quality Facility CS-F	 5-6
	5.3.		
	5.3.		
	5.3.	8 Other Water Quality Facilities	 5-7

Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED iv

	5.4	Gutter Design	5-8	
	5.5	Sag Design		
	5.6	Enclosed Drainage Design	5-8	
	5.7	Culvert Design	5-9	
	5.8	Ditch Design	5-9	
	5.9	Downstream Analysis		
	5.10	Level of Retrofit	5-9	
6.		MITS AND ASSOCIATED REPORTS		
	6.1	Permits and Approvals	6-1	
	6.2	Easements		
	6.3	Additional Reports or Studies	6-1	
7.	INSP	ECTION AND MAINTENANCE SUMMARY	7-1	
8.	Ref	ERENCES	8-1	
List of Figures				

List of Figures

Figure 1-1. Project Footprint & Vicinity Map	
Figure 1-2. Proposed Improvements	
Figure 2-1.1 Existing Drainage System	
Figure 2-1.2 Existing Surface Water Systems	
Figure 2-2. Existing Drainage Sub-Basins	
Figure 2-3. Surficial Soils	
Figure 2-4. Wellhead Protection Zones	
Figure 2-5. Land Use Designation - Oregon	
Figure 4-1. Proposed Sub-Basins	

List of Tables

Table 3-1. Design Precipitation	. 3-2
Table 3-2. Design Storms for Stormwater Conveyance	
Table 3-3. Design Parameters for Inlet and Pipe Design	. 3-3
Table 3-4. Design Parameters for Biofiltration Swale Design	. 3-3
Table 3-5. Listed Pollutants and TMDLs	. 3-6
Table 4-1. Proposed Drainage Sub-Basins	. 4-1
Table 5-1. Water Quality Treatment Facility Summary	. 5-3

Appendices

- Appendix A TDA Maps, Drainage Basin Maps, and Area Calculations
- Appendix B Calculations and Program Output
 - B-1 MGSFlood Output
 - B-2 BMPs Design
 - B-3 Inlet Spreadsheets
 - B-4 Sag Design Spreadsheets
 - B-5 Storm Drain Design
 - B-6 Ditch Design
 - B-7 Downstream Analysis
- Appendix C Drainage Plan Sheets and Details
- Appendix D Drainage Profile Sheets
- Appendix E Roadway Cross Sections and Profiles
- Appendix F Misc. Contract Plan Sheets
- Appendix G Traffic Analysis Data
- Appendix H Environmental Documentation
- Appendix I Specialty Design Reports
 - I-1 Bridge Scour Evaluation
- Appendix J UIC Registration Forms
- Appendix K Supplements and Revisions
- Appendix L Miscellaneous Documents

ACRONYMS

AcronymDescriptionADAAmericans with Disabilities ActADTAverage Daily TrafficBMPBest Management PracticeBNSFBurlington Northern Santa Fe RailroadBPABoneville Power AdministrationCFRCode of Federal RegulationsCMPCorrugated Metal PipeCIAContributing impervious areaCRCColumbia River CrossingCOPCity of PortlandC-TranClark County Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Impact StatementEPAU.S. Environmental Impact StatementEFAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementEFAEderal Tenegrency Management AgencyFHWAFederal Tenegrency Management AgencyFHWAFederal Tensit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMiminuteMinMilepost		
ADTAverage Daily TrafficBMPBest Management PracticeBNSFBurlington Northern Santa Fe RailroadBPABonneville Power AdministrationCFRCode of Federal RegulationsCMPCorrugated Metal PipeCIAContributing impervious areaCRCColumbia River CrossingCOPCity of PortlandC-TranClark County Public Transit Benefit Area AuthorityCOVCity of VortlandC-TranClark County Public Transit Benefit Area AuthorityCOVCity of VortlandC-TranClark County Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Energency Management AgencyFHWAFederal Impact StatementFEMAFederal Impact StatementFEMAFederal Information SystemGISGeographic Information SystemICPInitial Construction ProgramInterCEPInitial Construction ProgramInterCEPInitial Construction ProgramInterCEPInitial Construction ProgramInterCEPInitial Construction ProgramInterCEPInitial Constructi	Acrony	m Description
BMPBest Management PracticeBNSFBurlington Northern Santa Fe RailroadBPABonneville Power AdministrationCFRCode of Federal RegulationsCMPCorrugated Metal PipeCIAContributing impervious areaCRCColumbia River CrossingCOPCity of PortlandC-TranClak County Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Impact StatementEPAU.S. Environmental Impact StatementEFAFindangered Species ActExpoPortland Metropolitan Exposition (Center)FIISFinda Environmental Impact StatementFEMAFederal Energency Management AgencyFHWAFederal Imergency Management AgencyFHWAFederal Impact StatementFIRMFlood Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimile	ADA	Americans with Disabilities Act
BNSFBurlington Northern Santa Fe RailroadBPABonneville Power AdministrationCFRCode of Federal RegulationsCMPCorrugated Metal PipeCIAContributing impervious areaCRCColumbia River CrossingCOPCity of PortlandC-TranClark County Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Impact StatementEPAU.S. Environmental Impact StatementEPAU.S. Environmental Impact StatementEPAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Transit AdministrationFIRMFederal Transit AdministrationFIRMFederal Transit AdministrationGISSGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALogally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimile	ADT	Average Daily Traffic
BPABoneville Power AdministrationCFRCode of Federal RegulationsCMPCorrugated Metal PipeCIAContributing impervious areaCRCColumbia River CrossingCOPCity of PortlandC-TranClark County Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Spacies ActEXPOPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAEderal Emergency Management AgencyFHWAFederal Transit AdministrationFIRMFood Insurance Rate MapsFtfedt/footFTAFederal Transit AdministrationGISSGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimile	BMP	Best Management Practice
CFRCode of Federal RegulationsCMPCorrugated Metal PipeCIAContributing impervious areaCRCColumbia River CrossingCOPCity of PortlandC-TranClark County Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Transit AdministrationFIRMFlood Insurance Rate MapsFtfed/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimile	BNSF	Burlington Northern Santa Fe Railroad
CMPCorrugated Metal PipeCIAContributing impervious areaCRCColumbia River CrossingCOPCity of PortlandC-TranClark Courty Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Transit AdministrationFIRMFlood Insurance Rate MapsFtfederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	BPA	Bonneville Power Administration
CIAContributing impervious areaCRCColumbia River CrossingCOPCity of PortlandC-TranClark County Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Emergency Management AgencyFIfedifootFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimile	CFR	Code of Federal Regulations
CRCColumbia River CrossingCOPCity of PortlandC-TranClark County Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFloot Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	CMP	Corrugated Metal Pipe
COPCity of PortlandC-TranClark County Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	CIA	Contributing impervious area
C-TranClark County Public Transit Benefit Area AuthorityCOVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfeet/footFTAGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMinminute	CRC	Columbia River Crossing
COVCity of VancouverCWSClean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfedt/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMinminute	COP	City of Portland
CWSCean Water ServicesDEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMinmileMinminute	C-Tran	Clark County Public Transit Benefit Area Authority
DEISDraft Environmental Impact StatementDEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMixMetropolitan Area ExpressMinmileMinminute	COV	City of Vancouver
DEQOregon Department of Environmental QualityEISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Emergency Management AgencyFIRMFood Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	CWS	Clean Water Services
EISEnvironmental Impact StatementEPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	DEIS	Draft Environmental Impact Statement
EPAU.S. Environmental Protection AgencyESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	DEQ	Oregon Department of Environmental Quality
ESAEndangered Species ActExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	EIS	Environmental Impact Statement
ExpoPortland Metropolitan Exposition (Center)FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	EPA	U.S. Environmental Protection Agency
FEISFinal Environmental Impact StatementFEMAFederal Emergency Management AgencyFHWAFederal Emergency Management AgencyFHWAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	ESA	Endangered Species Act
FEMAFederal Emergency Management AgencyFHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeIRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	Expo	Portland Metropolitan Exposition (Center)
FHWAFederal Highway AdministrationFIRMFlood Insurance Rate MapsFtfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	FEIS	Final Environmental Impact Statement
FIRMFlood Insurance Rate MapsFtfeet/footFTAfeetal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	FEMA	Federal Emergency Management Agency
Ftfeet/footFTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimile	FHWA	Federal Highway Administration
FTAFederal Transit AdministrationGISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	FIRM	Flood Insurance Rate Maps
GISGeographic Information SystemICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	Ft	feet/foot
ICPInitial Construction ProgramInterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	FTA	Federal Transit Administration
InterCEPInterstate Collaborative Environmental ProcessLPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	GIS	Geographic Information System
LPALocally Preferred AlternativeLRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	ICP	Initial Construction Program
LRTLight Rail TransitMAXMetropolitan Area ExpressMimileMinminute	InterCE	D Interstate Collaborative Environmental Process
MAX Metropolitan Area Express Mi mile Min minute	LPA	Locally Preferred Alternative
Mi mile Min minute	LRT	Light Rail Transit
Min minute	MAX	Metropolitan Area Express
	Mi	mile
MP Milepost	Min	minute
	MP	Milepost

viii Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED

Acronym	Description
Mph	Miles per hour
NAVD	North American Vertical Datum
NB	Northbound
NEPA	National Environmental Policy Act
NGVD	National Geodetic Vertical Datum
NMFS	National Marine Fisheries Service
NOAA	National Oceanic and Atmospheric Administration
NOAA Fisheries	National Oceanic and Atmospheric Administration for Fisheries
NPDES	National Pollutant Discharge Elimination System
NPH	North Portland Harbor
NRCS	Natural Resources Conservation Service
OAR	Oregon Administrative Rule
ODFW	Oregon Department of Fish & Wildlife
ODOT	Oregon Department of Transportation
OHW	Ordinary High Water Line
ORS	Oregon Revised Statutes
PCBs	Polychlorinated Biphenyls
PEN	Peninsula Drainage District
PGIS	Pollutant generating impervious area
PIR	Portland International Raceway
PPM	Parts Per Million
RCW	Revised Code of Washington
ROD	Record of Decision
ROW	Right-of-Way
SB	Southbound
SEPA	State Environmental Policy Act
SMA	Shoreline Management Act
TMDL	Total Maximum Daily Load
TriMet	Tri-County Metropolitan Transportation District of Oregon
TSS	total suspended solids
USACE	U.S. Army Corps of Engineers
USDA	U.S. Department of Agriculture
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey
WDFW	Washington Department of Fish and Wildlife
WRD	Oregon Department of Water Resources

1. Introduction

1.1 Overview – Columbia River Crossing Project

This Stormwater Design Report, which comprises four volumes, describes the design of the stormwater collection and conveyance systems (inlets, pipes, and ditches), and water quality facilities developed to treat project runoff for the Initial Construction Program (ICP) portion of the Columbia River Crossing (CRC) project. It does not address the effect of proposed bridges on scour or on water surface elevations for the Columbia River, the primary watercourse traversed by the project, nor does it include any temporary erosion and sediment control that may be required during construction.

The CRC project is a bi-state multimodal initiative which is being led by the Oregon Department of Transportation (ODOT) and Washington State Department of Transportation (WSDOT). The team also includes Metro, Southwest Washington Regional Transportation Council, Tri-County Metropolitan Transportation District of Oregon (TriMet), Clark County Public Transit Benefit Area Authority (C-TRAN), and the cities of Portland and Vancouver. Transportation modes addressed by the project include highway, light rail transit, bicycle, and pedestrian.

The project encompasses a five-mile length of the Interstate 5 (I-5) corridor within the cities of Portland (Oregon) and Vancouver (Washington State) as shown on Figure 1-1. The Columbia River is the only watercourse that the project crosses. Within the corridor, Hayden Island separates the river into two channels; the main channel to the north and North Portland Harbor to the south. The corridor, which extends from North Victory Boulevard in Portland to SR 500 in Vancouver, is located in Sections 3 and 4, Township 1N, Range 1E, WM., and Sections 14, 15, 22, 23, 26, 27, 33, and 34, Township 2N, Range 1E, WM.

The project corridor lies within the Columbia River valley. The Columbia River dominates the project area with Columbia Slough located at the project southern boundary. For the purpose of this report, the three watersheds crossing the project corridor are defined as the project drainage basins. These include, from south to north, Columbia Slough, Columbia River South, and Columbia River North.

The project includes improvements to interchanges with two state highways (SR 14 and SR 500), both are located in Washington State. The following major roads also cross the corridor:

- N Victory Boulevard (Portland)
- N Marine Drive (Portland)
- NE Martin Luther King Jr. Boulevard (Portland)
- E Mill Plain Boulevard (Vancouver)
- E McLoughlin Boulevard (Vancouver)
- E Fourth Plain Boulevard (Vancouver)

1-2 Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED

There are a number of federal, state, and local agencies with direct jurisdiction over or significant input to the stormwater aspects of the CRC project. These include:

- National Marine Fisheries Service (NMFS)
- U.S. Environmental Protection Agency (EPA)
- Oregon Department of Environmental Quality (DEQ)
- Washington State Department of Ecology (Ecology)
- City of Portland (COP)
- City of Vancouver (COV)

The state and federal agencies listed above are signatories of the Interstate Collaborative Environmental Process (InterCEP) agreement. The agreement defines a process for coordinating their involvement, and streamlining regulatory reviews and permits agencies and through this process, the team engages in an ongoing dialogue with the necessary state and federal agencies prior to making major decisions.

One result of this approach is the adoption of ODOT's technical memorandum on stormwater water quality (ODOT 2009) on a project-wide basis to provide a standard approach to determining types of water quality facilities that would provide adequate protection to listed species. The memorandum is the result of a venture by ODOT, Federal Highway Administration (FHWA), and natural resource agencies (NMFS, Oregon DEQ, U.S. Fish and Wildlife Service (USFWS), EPA, and the Oregon Department of Fish and Wildlife (ODFW)). The decision to use this approach on the CRC project has been endorsed by WSDOT and Ecology.

The general approach to stormwater water quality management is to treat runoff to reduce the following pollutants that are typically associated with transportation projects¹:

- Debris and litter
- Suspended solids such as sand, silt and particulate metals
- Oil and grease
- Dissolved metals (dissolved copper is of particular concern due to its potential impact on the olfactory systems of listed fish)

The overriding requirements for stormwater management, which are defined in the Biological Opinion (NMFS 2011), can be summarized as follows:

• Provide pollution reduction and, where required, flow control for the entire Contributing Impervious Area (CIA) regardless of whether or not the impervious area would be considered pollutant-generating. The CIA comprises the impervious area within the project limits plus any impervious surfaces outside the project limits that would drain to the project via direct flow or discrete conveyance.

¹ Stormwater Management Plan Submission Guidelines for Removal/Fill Permit Applications Which Involve Impervious Surfaces. State of Oregon Department of Environmental Quality. July 2005, 2008, 2012.

Treat stormwater runoff using a) bioretention, b) bioslope, c) porous pavement,
 d) constructed wetland, e) vegetated and soil amended swale designed for infiltration, or
 f) a treatment train described in "Stormwater Best Management Practices in an Ultra-Urban Setting" (FHWA 2002).

1.2 Scope – Columbia River Slough Watershed

Volume II, this document, describes the design of the stormwater pipes and ditches comprising the stormwater conveyance system, and water quality facilities to handle and treat project runoff within the Columbia Slough watershed. Further information on the Columbia River Crossing Project can be found in Volume I – Stormwater Design Report Summary.

The CRC project, or Locally Preferred Alternative (LPA), was selected through the alternative analysis and development process. A detailed description of the selected alternative is included in Chapter 2 of the Final Environmental Impact Statement (FEIS). The construction of the selected alternative will be phased to match available funding while providing significant transportation benefits. The first construction phase is referred to as the Initial Construction Program (ICP). Project-related activities within the Columbia Slough watershed are shown in Figure 1-2.

The ICP generally includes the following multimodal elements:

- A new river crossing over the Columbia River and I-5 highway improvements, including major improvements to three interchanges, as well as associated enhancements to the local street networks in Vancouver and Portland. Minor improvements will also be done to I-5 outside of these interchanges.
- Extension of light rail from the Expo Center in Portland to Clark College in Vancouver, and associated transit improvements, including transit stations, park-and-rides, bus route and station changes, and expansion of a light rail transit (LRT) maintenance facility.
- Bicycle and pedestrian improvements throughout the project corridor that connect to the transit system.

The following construction elements describe improvements located specifically within the Columbia River Slough watershed. Construction elements describing improvements located within other watersheds within the CRC project footprint are located in Volumes I, III, and IV.

Highway construction will involve:

- Elevate, realign, and reconstruct Marine Drive and modify the Marine Drive ramp terminal intersection and connecting ramps. Elevating Marine Drive provides a grade separation of the LRT from the local road mainland connector bridge to Hayden Island.
- Construct a new single-point interchange at Marine Drive and I-5 and associated ramps. This will require demolition of the existing structure that crosses I-5 and construction of a new structure over I-5 to carry Marine Drive. The Marine Drive alignment constructed with the mainland connector bridge will be adjusted in grade and alignment to match the new single point interchange.
- Construct a new driveway on the extension of N Expo Road as a replacement access point for Diversified Marine Inc. and Ross Island Sand and Gravel.

- 1-8 Columbia River Crossing Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED
 - Reconstruct the connections from Marine Drive to Union Court and from Vancouver Way to Marine Drive.
 - Construct a road on the south end of the Expo Center between N Expo Road and Force Avenue and thus provide a local route between Hayden Island and Marine Drive.
 - Widen I-5 northbound from the Victory Boulevard crossing to the North Portland Harbor (NPH) Bridges to accommodate the northbound Denver Street entrance ramp as an auxiliary lane.

Bridge construction will involve:

- Re-stripe I-5 and reallocate the width of the North Portland Harbor (NPH) Bridges to allow for an additional southbound lane.
- Construct a mainland connector bridge to Hayden Island over NPH. The NPH Bridges are multimodal will accommodate local vehicle traffic, LRT, and bicycle and pedestrian facilities, and will connect to a new local street on Hayden Island and to N. Expo Road on the mainland.
- Widen I-5 southbound from the NPH Bridges to a point just south of the Victory Boulevard crossing to provide an additional lane.
- Relocate the function of the NPH shared-used path to the sidewalk and bike lanes on the new mainland connector multimodal bridge.

Transit-related improvements will involve:

- Construct a double-track LRT guideway to extend from the existing Expo Center MAX station to the new multimodal mainland connector bridge over the North Portland Harbor and across Hayden Island. There will be accommodation for an at-grade crossing at Vancouver Way, a new street that is part of the larger Columbia River Crossing Project. The total distance of the LRT guideway between the Expo MAX station and the Columbia River Bridge approach structure is just over a half-mile.
- The grade of the track upon leaving the Expo MAX Station will be 6%. On the NPH Bridge, the grade from the south abutment to the approximate midpoint will be 5%, and then the grade will be 2% as the alignment descends to Hayden Island, before flattening out through the station and ultimately transitioning to the lower deck of the main river crossing bridge (with a maximum grade of 1%).
- The exclusive (LRV only) guideway is a mix of ballasted track and direct fixation (on structure) from the Expo MAX station to the lower deck of the main river crossing bridge. At Vancouver Way, ballasted track with modular grade crossing panels will be constructed.

Drainage improvements include:

- Providing water quality treatment facilities, within project right-of-way (ROW), for the project surface area runoff.
- New conveyance stormsewer pipes and structures (inlets, manholes) for the interchange, I-5 mainline, and modified roadways.

- Water quality treatment will include four constructed wetlands and three biofiltration swales.
- Stormwater planter strips will be installed on the local streets to provide water quality treatment to roadway runoff.
- The drainage design will be developed in accordance with ODOT, COP, and WSDOT design criteria.

1.3 Datum

Elevations presented in this report are referenced to the North American Vertical Datum of 1988 (NAVD88). It is important to note that jurisdictions and other projects in the area may reference another vertical datum, the most commonly used being the National Geodetic Vertical Datum of 1929 (NGVD29). Add approximately 3.5 feet to a NGVD elevation to obtain an approximate elevation to NAVD88.

1-10 Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED

Figure 1-2. Proposed Improvements

Not included in this draft.

2. Existing Conditions

2.1 Project Site

The project site addressed within this report is located within the Columbia Slough watershed. The watershed boundary is located at the southern end of the CRC project footprint, and discharges to the Willamette River. The watershed covers a 51-square-mile area that extends from Kelly Point to the west to Fairview Lake and Fairview Creek to the east, and now comprises the former Columbia River floodplain. Before the construction of a levee system and pump stations, the project area would have been subjected to frequent inundation from the surrounding water bodies.

The Marine Drive Interchange is located on the southern end of the CRC project and bounded by Victory Boulevard to the south and North Portland Harbor to the north. Land west of I-5 generally has an Industrial zoning designation while land to the east is generally designated as "open space." The latter area includes sports facilities such as baseball diamonds. In the vicinity of I-5, the original ground surface is below the Ordinary High Water Level for the Columbia River. (21.2 ft. NAVD88²) and groundwater levels are close to the surface.

2.2 Existing Drainage Systems

The existing drainage systems within and around the project site consist of a network of surface water bodies and enclosed conveyance systems. Runoff from the project area drains to a system of sloughs before being discharged to Columbia Slough. The drainage systems are mechanically controlled by four downstream pump stations operated by the Multnomah County Drainage district (MCDD). The pump stations are in place to regulate surface water discharges into the Columbia Slough by raising the water over the levee embankments system; which bounds the Columbia Slough, North Portland Harbor, and the Columbia River. As previously noted, the levee embankments are in place for the purpose of protecting the area from flooding. Figure 2-1.1 illustrates the existing drainage systems.

There are three drainage districts with jurisdiction over the project area as listed below with their respective pump stations. Figure 2-1.2 illustrates the existing surface water systems.

- Multnomah County Drainage District (MCDD)
- Peninsula Drainage District No.1 (PEN 1) Portland International Raceway (PIR) Pump Station Expo Pump Station
- Peninsula Drainage District No. 2 (PEN 2) Schmeer Road Pump Station PEN 2 – NE 13th Pump Station

² Memorandum from Kris Westersund (DEA) to Jim Burke (CRC) dated July 16, 2008. See Appendix C.

2-2 Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED

Peninsula Drainage District No. 1 and No. 2 own the four pump stations used by the project. However, the listed pump stations are operated and maintained by the MCDD.

The Peninsula Drainage Districts are separated by the I-5 mainline that was built over Denver Avenue, which was an interior cross levee. I-5, Marine Drive, and Martin Luther King, Jr. (MLK) Boulevard are elevated on an embankment that separates two drainage districts. The MCDD considers this embankment to be part of an internal levee system that protects the area from all but extreme flooding. Although the existing pump station operation provides regulation of discharges to Columbia Slough, there are no flow control measures for runoff within the project footprint.

There are no engineered water quality facilities except for a manhole sediment trap located at the Victory Boulevard interchange (see Figure 2-1.1) that treats runoff from approximately 6 acres of impervious surfaces at the interchange, but is not within the project footprint.

Surface runoff from I-5 and roads within the project footprint is generally confined to the roadway surface by continuous concrete barriers or curbs, and is collected almost entirely by closed gravity drainage systems with inlets and stormwater pipes. The one notable exception is MLK Boulevard east of I-5 where runoff is shed off the south shoulder is dispersed and infiltrated. The drainage systems that serve these roads do not handle runoff from outside the ROW.

2.3 Existing Drainage Basins

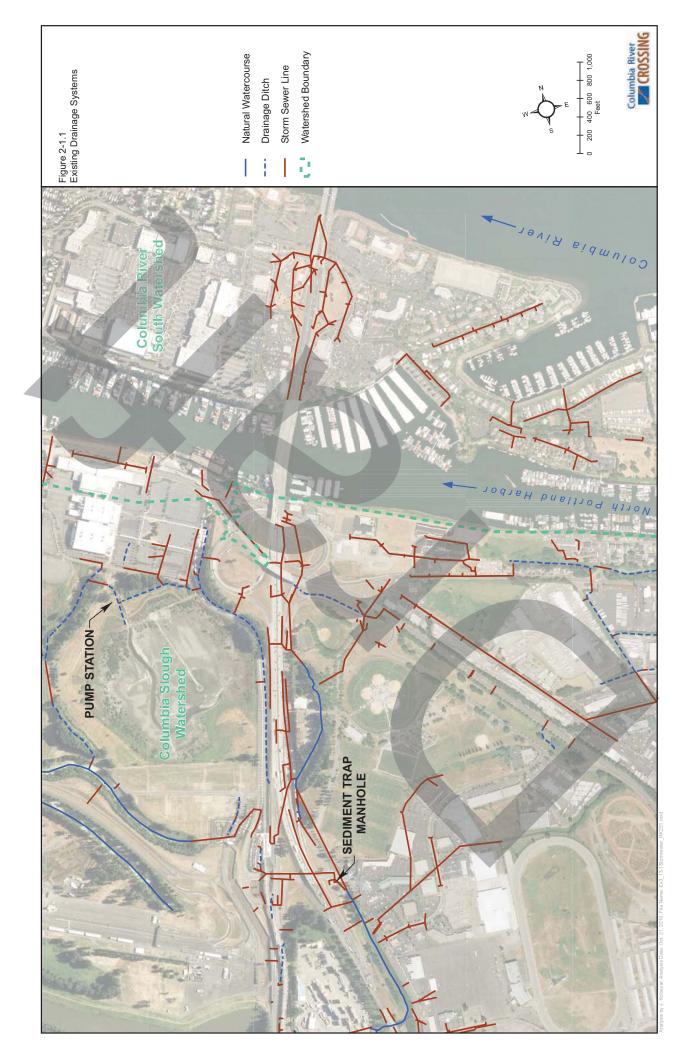
The limits of the existing drainage sub-basins within the Columbia River Slough are determined by the area draining to an outfall, whether on site or off site area is contributing. In this watershed outfalls are based on the existing pump stations located adjacent to the Columbia Slough channel and outfalls located along North Portland Harbor. The Expo Pump station is considered part of the PIR Pump station. Figure 2-2 shows the existing sub-basins, where delineated, and the general flow paths. Descriptions of each outfall and their drainage basins are provided below:

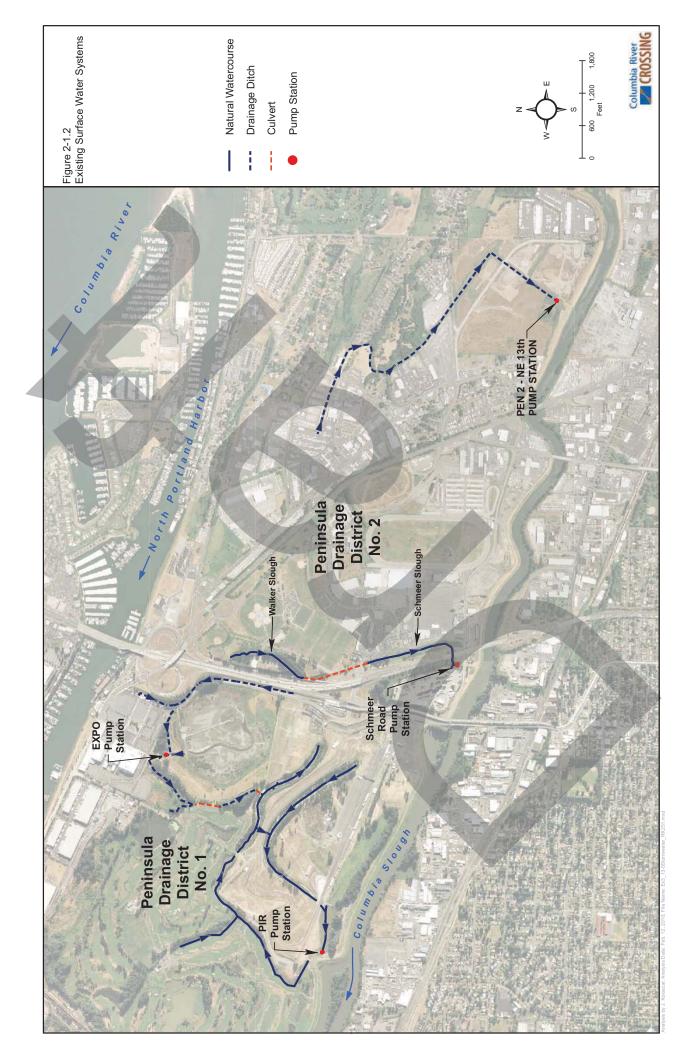
PIR Pump Station

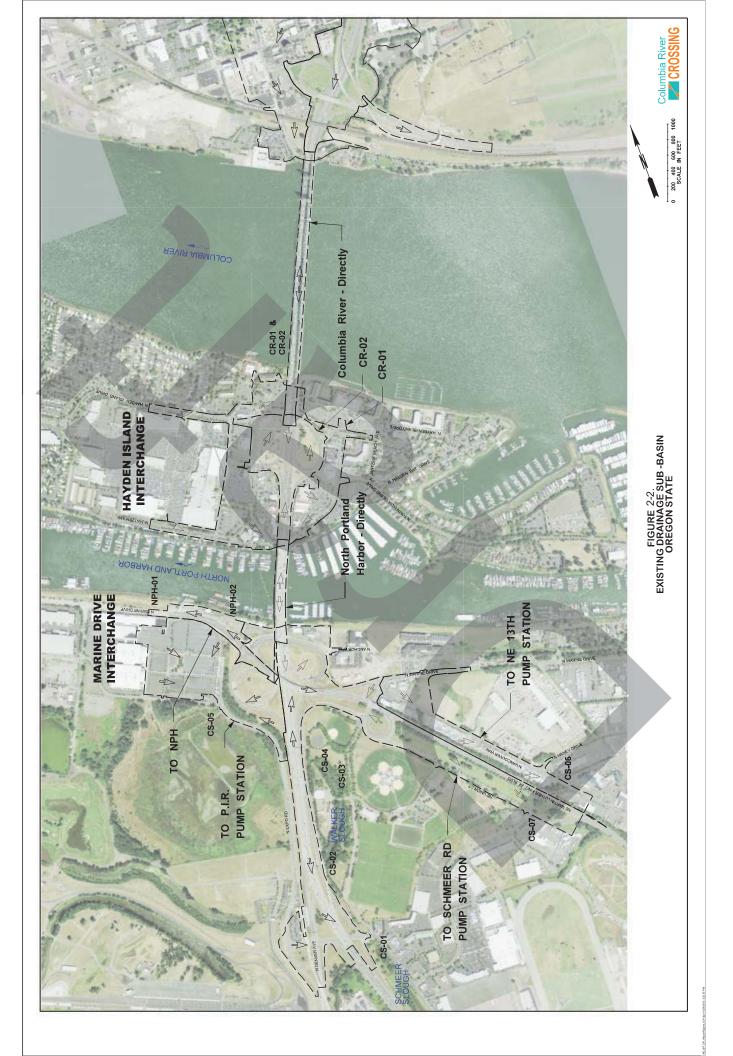
The area west of I-5 corridor and south of Marine Drive, including Expo drains to the PIR pump station. The basin drains southwesterly to the existing pump station west of Expo, which releases into the natural watercourse that outflows to PIR pump station.

PIR pump station is located within Peninsula Drainage District No. 1. The PIR pump station receives flows from nearby natural watercourses and flows routed through the Expo pump station via a series of drainage ditches and culverts. The pump releases outflows into the Columbia Slough. The pump station is sized to handle runoff from the 100-year storm event (typically occurs on average once within 100 years), and has an installed capacity of 19,700 gallons per year.

NE 13th Pump Station


The area on the east side of MLK Boulevard and Vancouver Way drains to the northeast and outflows into an enclosed drainage system on Vancouver Way. The enclosed system releases into the downstream drainage ditch that outflows to the NE 13th pump station.


The NE 13th pump station is located within Peninsula Drainage District No. 2 (PEN 2). The NE 13th pump station receives flows from the upstream drainage ditch and releases outflows into the Columbia Slough. The pump station is sized to handle the 100-year runoff (events that typically occur on average once over 100 years), and has an installed capacity of 32,000 gallons per year.


Schmeer Road Pump Station

The area east of Marine Drive, including portions of MLK Boulevard, drains to the southeast through an enclosed drainage system and outflows into Walker Slough. The area surrounding Victory Blvd, including I-5 to the bridge over Denver Avenue entrance ramp drains to the southeast into an enclosed system to the eastern side of I-5.

Schmeer Road pump station is located within Peninsula Drainage District No. 2, which includes the area east of the I-5 corridor. The NE 13th pump station receives flows from the upstream drainage ditch. The pump releases outflows into the Columbia Slough. The Schmeer Road pump station is sized to handle the 100-year runoff (storm events that typically occur on average once over 100 years), and has an installed capacity of 40,000 gallons per year.

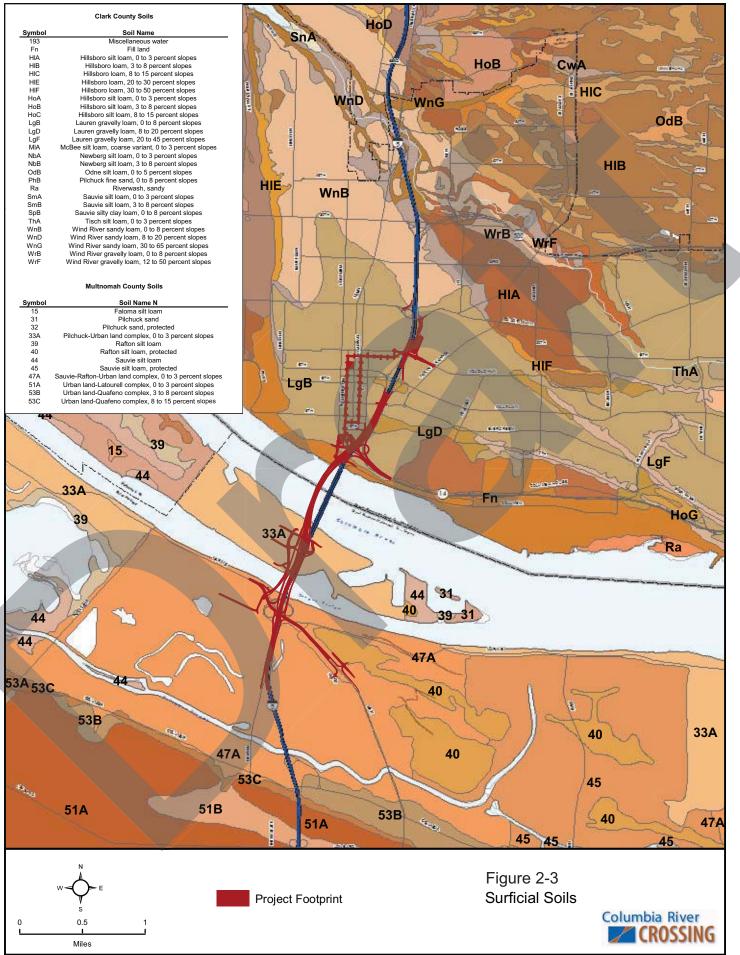
2.4 Soils

Figure 2-3 shows the approximate aerial extent of the surficial soils in the vicinity of the entire project corridor. The descriptions below are derived from the National Resources Conservation Service (NRCS) website³. Site specific information to be provided in the discussion of water quality facilities will be based on geotechnical site exploration.

The Sauvie-Rafton-Urban land complex belongs to Hydrologic Soil Group D, the Pilchuck-Urban land complex belongs to Group A, and the Wind River and Lauren soils belong to Group B. A soil survey⁴ indicates that water tables are at a depth of less than 1 foot for the Sauvie-Rafton-Urban land complex, and between two and four feet for the Pilchuck-Urban land complex. While the depths for the Sauvie-Rafton-Urban complex south of North Portland Harbor are confirmed by borehole logs available for the project area, they also indicate that the soils can be highly variable. For the Pilchuck-Urban soils on Hayden Island, available geotechnical data suggests that the water table is approximately 15 feet below ground level. It should also be noted that the phreatic surface is expected to respond to changes in river level given the highly permeable nature of these soils.

The hydrologic properties of the three Groups referenced above are:

- Group A soils have a high infiltration rate and consist mainly of deep, well drained to excessively drained sands or gravelly sands.
- Group B soils have a moderate infiltration rate and consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture.
- Group D soils have a low infiltration rate and high runoff potential. They consist primarily of clay soils that have high swelling potential, a permanent high water table, or a clay layer at or near the surface, and shallow soils over nearly impervious material.


Based on available data, there are no Group C soils within the project area.

Given the predominance of poorly drained soils and high groundwater table south of North Portland Harbor, infiltration (the preferred method for stormwater management) is not recommended for this area. As noted above, soils are variable and future site investigations may reveal locations where infiltration might be feasible.

Additional geotechnical investigations have been performed, resulting in technical documentation of the soil properties in and around the existing and proposed bridge locations. Upon further review of these technical documents additional definition of the onsite soils will be included in this report.

³ http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

⁴ Soil Survey of Multnomah County, Oregon. United States Department of Agriculture, Soil Conservation Service, in cooperation with Oregon Agricultural Experiment. August 1983.

2.4.1 Infiltration

Infiltration is not currently proposed in the vicinity of the Marine Drive Interchange.

2.4.2 Groundwater

The groundwater elevations within the Marine Drive interchange are currently being evaluated.

2.4.3 Aquifers

Within the Portland Basin Aquifer System on the Oregon side of the project corridor, the project area is located on the unconsolidated sedimentary aquifer of the upper sedimentary subsystem (McFarland and Morgan 1996). This aquifer primarily comprises late Pleistocene catastrophic flood deposits and Columbia River alluvium. Recharge of the aquifer is primarily by direct infiltration of precipitation, though injection wells and wastewater from septic systems are locally important. Median hydraulic conductivity (the rate at which groundwater flows through soil and bedrock) of the aquifer is high, approximately 200 feet per day.

South of the Columbia River, several wells have been identified in the vicinity of the project and are likely screened within the unconsolidated sedimentary aquifer. These wells are used for a variety of industrial, irrigation, and municipal purposes. For further details on these wells, refer to the Section 4.6 of the FEIS Geology and Soils Technical Report. Figure 2-4 provides wellhead protection zones within the project corridor.

For details regarding the aquifer which affects the project corridor directly, refer to Volume I.

2.4.4 Wetlands

Existing field identified wetlands and wetland inventory areas for the project corridor are delineated in the Wetlands and Stormwater Treatment Facilities Figures 1 through 4 located in Appendix L.

2.5 Existing Outfalls

Within the Columbia Slough Watershed there are three existing outfalls. Outfalls are defined in this report as any location where runoff leaves the project footprint. In the Columbia River Slough watershed these all occur at the existing pump stations described below.

PIR Pump Station

The area west of I-5 and south of Marine Drive drains to a wetland regulated by the Expo pump station. The Expo pump station releases the water through a series of drainage ditches and culverts before outletting into the natural watercourse flowing to the PIR pump station. The PIR pump station routes the water over the levee embankment and into the Columbia Slough.

NE 13th Pump Station

The area north side of MLK Boulevard and Vancouver Way drains to an enclosed drainage system that outlets into a drainage ditch that flow to the NE 13th pump station. The NE 13th pump station routes the water over the levee embankment and into the Columbia Slough.

Schmeer Road Pump Station

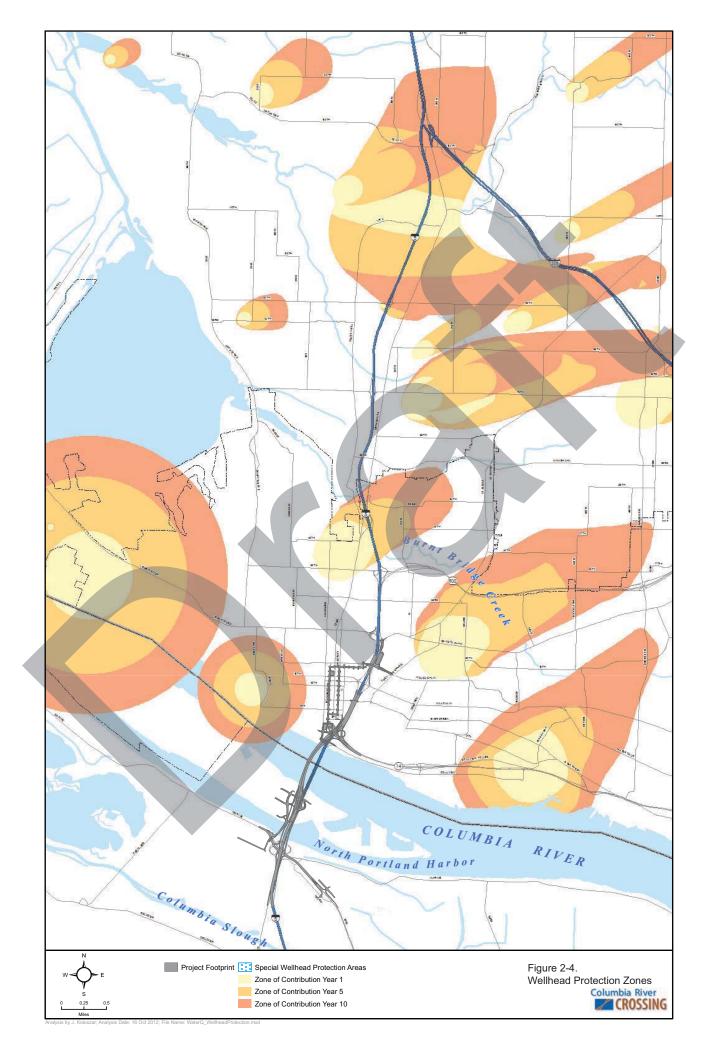
The areas from the I-5 mainline, the eastern half of the Marine Drive interchange, and the southern half of MLK Boulevard drain through an enclosed drainage system which outflows into a large grassed lined channel located adjacent to the eastern side of I-5, known as Walker and Schmeer Slough. Walker Slough is connected to Schmeer Slough through an existing underground culvert pipe, several hundred feet long. Schmeer Slough outlets into Columbia Slough downstream.

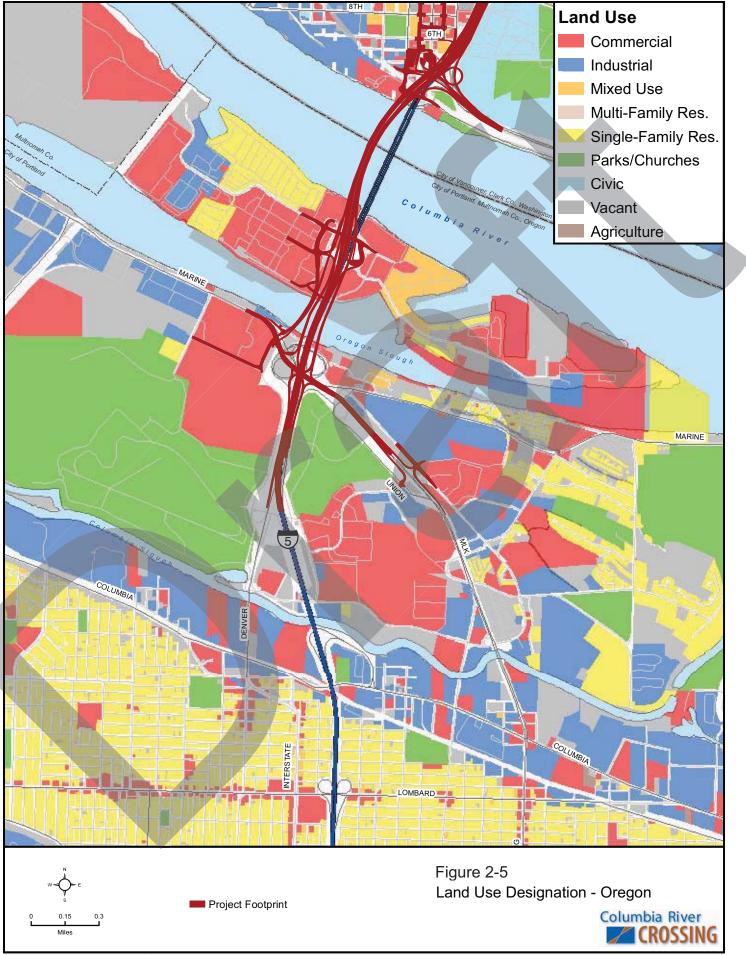
2.6 Land Use

Exhibit 2-5 shows the general land use in the vicinity of the project corridor.

South of the Columbia River, land west of I-5 between Victory Boulevard and North Portland Harbor generally has an Industrial zoning designation while land to the east is generally designated as Open Space.

2.7 Utilities


Utility conflicts throughout the project corridor are currently being studied. Discussions at routine meetings with local agencies are ongoing to determine the extents of conflicts, disruptions to services, and relocations. Most of the Marine Drive interchange existing stormwater conveyance systems will be removed or abandoned in place. Existing outfalls will be maintained. Analysis of individual outfalls needs to be completed to determine their condition and suitability for use.


As the design progresses, conflicts with existing utilities will be further assessed and summarized in this section. Anticipated conflicts will be a result of structures passing through existing utilities, requiring relocation of the utility and its connections.

2.8 Climate

The climate within the project area is characterized by short, dry and warm summers, with a typically cool and wet spring, fall, and winter. The Coast Range offers limited shielding from the Pacific Ocean storms while the Cascades provide an orographic lift of moisture-laden westerly winds, resulting in moderate rainfall. Nearly 90% of the average annual rainfall of 36.3 inches occurs from October through May. The maximum 24-hour rainfall of 4.44 inches occurred in October 1994. Snowfall accumulations are rarely more than 2 inches, and usually melt within a couple of days.

Average monthly temperatures taken at Portland International Airport vary from 39.6 °F in January to 68.6 °F in August. The maximum and minimum recorded temperatures are 107 °F and -3 °F. These temperatures occurred in August 1981 and February 1950, respectively. Surface winds seldom exceed sustained wind speeds of 50 mph and have rarely exceeded 75 mph (NOAA 2009).

Analysis by J. Koloszar; Analysis Date: 16 Oct 2012; File Name: Figure 2_4_2_ExistingLandUses.mxd

3. Design Standards

Following is a description of important considerations that affect stormwater design on a projectwide basis.

The key stormwater related issues include:

- 1. Regulatory agency concerns including:
 - a. Protection of resources listed under the Endangered Species Act (ESA), notably the presence of salmonids in the Columbia River⁵. Specifically, NMFS has requested stormwater management focus on avoiding and minimizing impacts on their trust resources, and mitigation for unavoidable impacts. Dissolved metals are the primary pollutants of concern, especially dissolved copper. The agency requests that runoff from all contributing impervious surfaces within the project be treated. The agency also recommends single design standards be used for the Columbia River Bridges.
 - b. The COP Bureau of Environmental Services (BES) also urged avoiding and minimizing impacts to natural resources⁶. The agency also expects the project to meet the requirements of the Portland Stormwater Management Manual.
 - c. North of the Columbia River, the project corridor lies above the Troutdale Aquifer. The Environmental Protection Agency (EPA) recently designated this aquifer a Sole Source Aquifer, and stormwater facilities will need to be designed to eliminate the likelihood of contamination from polluted runoff.
- 2. Multi-agency jurisdiction and differing design standards and methodologies.
- 3. The need to collect and treat runoff from bridges across North Portland Harbor and Columbia River. Runoff from the existing bridges currently discharges, untreated, directly to the waterbody below.
- 4. The difficulty of incorporating stormwater treatment facilities within a confined, highly developed, urban environment.

3.1 Design Criteria

Snow was not considered at this level of design.

The precipitation values used for the project at this level of design are listed in Table 3-1. Values were populated from National Oceanic Atmospheric Administration (NOAA) Atlas 2 at 45.6387°N, 122.6615°W.

⁵ Letter from Kim Kratz (NMFS) to Heather Gunderson (CRC) dated August 6, 2008. See Appendix C.

⁶ Letter from Dean Marriott (BES) to Heather Gunderson (CRC) dated February 28, 2007. See Appendix C.

3-2 Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED

Storm Event	Precipitation (inches)	Precipitation Intensity (in/hr)
2-yr 6-hr	1.03	0.17
2-yr 24-hr	2.09	0.09
100-yr 6-hr	1.91	0.32
100-yr 24-hr	4.12	0.17

Table 3-1. Design Precipitation

The design storm return periods used for the project at this level of design are listed in Table 3-2.

Table 3-2	Docian	Storme	for	Stormwator	Convovanco
	Design	31011115	101	Stormwater	Conveyance

	Return Period (years)			
Stormwater System Element	ODOT ^{7,8}	City of Portland ⁹	WSDOT ¹¹	
Gutters & inlets	10	10	10	
Laterals without trunk lines	-	-	10	
Laterals and trunk lines	10	10	25	
Inlets & conduits from sags	50	-	50	
Ditches & channels	10	25	10	
Culverts	50, 100 and 500	25	25 and 100	
Energy Dissipators	50	-	-	

In determining appropriate inlet spacing the Curb and Gutter Spreadsheet WSDOT Highway Runoff Manual (HRM Jan 2010; Page 5-15) was utilized. In determining appropriate pipe sizing the Storm Drain Design Spreadsheet (WSDOT HM Jan 2010; Page 6-7 Figure 6-4.1) was utilized. Input Parameters are listed in Table 3-3. The table provides values for both WSDOT and COV, where no value is presented for COV, the WSDOT values were used.

As design progresses it is expected that ODOT standards and design spreadsheets will be strictly adhered to.

⁷ *Hydraulics Manual.* Oregon Department of Transportation, Engineering and Asset Management Unit, Geo-Environmental Section. 2005.

⁸ For freeways.

⁹ Sewer and Drainage Facilities Design Manual. City of Portland, Bureau of Environmental Services. Public Review DRAFT, May 2006.

Design Parameter	WSDOT	ODOT	СОР	cov
Runoff Time of Concentration, Tc	5 minutes	5 minutes	5 minutes	
Runoff Coefficient, C	0.90	0.90	0.92	
Allowable Spread, Zd	Shoulder Width OR Figure 5- 4.1*	Shoulder Width or Table A**	Max Shoulder + 2 ft	
nlet Grate Width & Length, GW & GL (ft)	1.67 or 3.89, 2.00 or 2.01	1'-1.5" or 2'-3.37 5", 2 '- 8" or 3'-4.25"	1'-1.5" or 2'-3.375", 2'-8" or 3'-4.25"	
Flow Bypass, Qbp	< 0.10 cfs to existing system or within hazardous areas	Per Method A		
Flow Velocity, v	<5.0 ft/s	> 3ft/s		
nlet Spacing	Min.= 20 ft, Max.= 300 ft, or Inlet Spacing Spreadsheet	Min = 10ft, Max = 400ft, or Inlet Design Computation Sheet		Max.= 400ft
Pipe Length, L	Max.= 300 ft	Max = 400 ft		
Pipe Diameter, D	Min.= 12-inch	Min. = 45 inch	10 inch leads, 12 min.	Mainline: 12 inch Min. Lateral: 8 or 10 inch Only
Mean Rainfall Intensity, MRI	25 year (laterals and trunk lines) m= 6.06, n = 0.515	10 year, For zone 7	10 year	
Pipe: Time of Concentration, Tc	5 minutes	5 minutes	5 minutes	
Manning Roughness Coefficient, n	0.013	0.015	0.013	0.013
Pipe Velocity, v	10 ft/s Max, 3 ft/s Min.	3ft/s Min.	15 ft/s Max; 2.5 ft/s Min	

Table 3-3. Design Parameters for Inlet and Pipe Design

*WSDOT Hydraulics Manual 2010; Page 5-5 **ODOT Hydraulics Manual 2011; Page 13-D-1

Biofiltration Swales

Design and assumptions were developed into a template spreadsheet with explicit design instructions found and followed in WSDOT HRM (WSDOT HRM Jan 2010; RT.04 – Biofiltration Swale; Pages 5-44 through 5-49: Method 1) Input Parameters are listed in Table 3-4.

Table 3-4. Design Parameters for Biofiltration Swale Design

Design Parameter	
Longitudinal Slope, s	Min. 1.5%, Max. 5.0%
Manning's Roughness Coefficient, n	0.22 (grass-legume mix on lightly compacted compost-amended soil)0.35 (with surface roughening features if site constrained)
Residence Time, t	9 minutes

3.2 Stormwater Management Guidelines

The following demonstrates the design approach and methods of treatment within the following management parameters:

1. Treatment capacity design will meet standards and specifications found in HRM (WSDOT 2010a), and thus exceed 50% of the 2-year, 24 hour storm; or 91% of the average annual runoff, as determined by continuous flow model.

- 3-4 Columbia River Crossing Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED
 - 2. Stormwater quality treatment will consist of one or more of the following methods:
 - a. Bioretention ponds are infiltration ponds that use an engineered (amended) soil mix to remove pollutants as runoff infiltrates through this zone to the underlying soils. The primary mechanisms for pollutant reduction are filtration, sorption, biological uptake, and microbial activity. While this best management practice (BMP) is best suited to sites with Hydrologic Group A and B soils, it may be used for Group C and D Hydrologic Group soils with the addition of an underdrain system to collect infiltration runoff and direct it to a stormwater conveyance system. An infiltration rate of 1 inch per hour was assumed when estimating the size of these facilities. If the soils cannot sustain this rate and there is insufficient space to increase the pond size to accommodate a lower value, underdrains will be installed.
 - b. Constructed treatment wetlands are shallow, permanent, vegetated ponds that function like natural wetlands. They remove pollutants through sedimentation, sorption, biological uptake, and microbial activity.
 - c. Soil-amended biofiltration swales are trapezoidal channels with mild slopes and shallow depths of flow. The channels are dry between storm events and are typically vegetated. They treat runoff by filtration and sorption as runoff flows through the grass surface and amended soils. Amended soils, especially compost amended, constitute an excellent filtration medium. Compost-amended soils have a high cation exchange capacity that will bind and trap dissolved metals. Similar to bioretention ponds, an underdrain system is recommended for sites with Group C and D Hydrologic Group soils.
 - d. Soil-amended filter strips treat sheet runoff from an adjacent roadway surface. Similar to grass swales, filter strips treat runoff by filtration and sorption as runoff flows through the vegetated surface and amended soils. In a confined urban setting such as the project corridor, opportunities to use this BMP are limited. Bioslopes, like filter strips, treat sheet runoff from an adjacent roadway surface. They comprise a vegetated filter strip, infiltration trench, and underdrain, and reduce pollutants through sorption and filtration. The percolating runoff flows through a special mixture of materials, including dolomite and gypsum, which promotes the adsorption of pollutants. Bioslopes are also known as media filter drains and ecology embankments.

Other water quality BMPs, including dispersal, drywells, and proprietary systems, such as cartridge filters, may be used when limiting factors prevent the use of these BMPs are prevented by lack of suitable space, soils non-conducive to infiltration, polluted soils, and protection of historic building foundations. Pre-treatment facilities including baffle type oil-water separators and coalescing plate oil-water are likely also. Their use is common in high average daily trip areas to protect the treatment facilities and to prevent overwhelming of the treatment technology. Accidents and spills are expected to occur on interstate freeways.

All treatment facilities will be designed and engineered to use the preceding techniques singly, or in combination, to achieve treatment. Engineering criteria including facility dimensions, depth, area, slopes, and materials (abiotic and biotic); and design parameters from the WSDOT Runoff Manual (WSDOT 2010a) will be used and met when designing these facilities.

All treatment facilities will be designed and engineered to use the preceding techniques singly, or in combination, to achieve treatment. Engineering criteria including facility dimensions, depth, area, slopes, and materials (abiotic and biotic); and design parameters from the WSDOT Runoff Manual (WSDOT 2010a) will be used and met when designing these facilities.

The project has agreed to adopt BMPs which are effective in reducing sediments, and particulate and dissolved metals. These agreements will be met. Specific locations of these facilities are described in additional volumes of this report and specific plan sheets for these facilities are located in Appendix C.

The following water quality BMPs used at Marine Drive Interchange are effective in reducing sediments, particulates, and dissolved metals; pollutants of concern for ESA-listed species observed in the waterbodies to which stormwater will be discharged. These BMPs would be constructed for the sole purpose of improving stormwater runoff quality. The location of such facilities in the proximity of well-travelled roads and transit systems combined with ongoing maintenance would discourage their use as habitat by wildlife.

- Constructed Treatment Wetlands
- Biofiltration Swales
- Filter Strips
- Bioslopes

Other water quality approaches, including **Dispersal**, and **Proprietary Systems** (such as cartridge filters), have been considered on a case-by-case basis where the BMPs listed above would not be practical or feasible.

Oil control pretreatment may be required at high-traffic intersections and park-and-ride facilities where high concentrations of oil and grease are expected in stormwater runoff. **Baffle Type Oil-Water Separators** and **Coalescing Plate Oil-Water Separators** are considered to be suitable types of treatment facility.

As the project design progresses, the team will continue to assess new technologies and whether they should be added to the suite of acceptable BMPs. For example, the Washington State Department of Ecology recently approved (Ecology 2009c) Americast's Filterra® system for reducing, among other pollutants, dissolved metals. This system uses engineered bioretention filtration incorporated into a planter box to treat runoff.

The waterbodies to which runoff would be discharged are Columbia Slough (via the Peninsula Drainage District No.1 and No.2 surface water systems and associated pump stations), and North Portland Harbor (a side channel of the Columbia River). Columbia Slough and North Portland Harbor contain species listed under the ESA, and all receiving watercourses are 303(d) listed. Note that although a watercourse may be 303(d) listed, the parameters listed may not necessarily have EPA-approved Total Maximum Daily Loads (TMDLs).

3-6 Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED

To address ESA and TMDL issues, the overall approach to stormwater management from a water quality perspective is to treat runoff to reduce the following pollutants that are typically associated with transportation projects¹⁰:

- Debris and litter
- Suspended solids such as sand, silt and particulate metals
- Oil and grease
- Dissolved metals

The last criterion, especially dissolved copper, is of particular concern to NMFS. Dissolved copper is known to have a detrimental effect on the olfactory senses of young salmonids.

Table 3-5 summarizes 303(d)-listed parameters and TMDLs for each receiving waterbody and the paragraphs following the table provide a brief description of existing water quality issues. Additional information may be found in the FEIS (CRC 2011).

Table 3-5. Listed Pollutants and TMDLs

Waterbody	303(d) Listed Pollutants	Established TMDLs
Columbia Slough	Toxics (lead, iron, manganese)	Toxics (lead, PCBs, DDE/DDT, dieldrin,
Oregon DEQ	Temperature	dioxin)
		Eutrophication (pH, dissolved oxygen,
		phosphorus and chlorophyll a)
		Bacteria

Columbia Slough is 303(d) listed for lead, iron, manganese, and temperature. TMDLs have been established for pH, dissolved oxygen, phosphorous, chlorophyll *a*, bacteria, lead, PCBs, DDE/DDT, dieldrin, and dioxin (DEQ 1998) and the Lower Slough (to which project runoff would be discharged) consistently exceeds the upper pH limit of the water quality standard in the spring and summer and the chlorophyll *a* standards in the spring, summer, and fall (City of Portland 2009). In addition, 50 percent of BES sampling in the Lower Slough immediately downstream of the project met the target of 25 mg/L for total suspended solids (TSS).

3.3 Other Requirements

3.3.1 Oil Control

Oil control BMPs will be evaluated for Marine Drive interchange. At this time ODOT has not identified requirements for oil control at high use intersections.

3.4 Pipe Alternatives

Design calculations assume concrete pipe with a Mannings n of 0.013. Pipe diameters range from 12-inch to 24-inch. In some cases, pi alternative pipe materials will be selected according to available cover and the expected traffic loading.

¹⁰ Stormwater Management Plan Submission Guidelines for Removal/Fill Permit Applications Which Involve Impervious Surfaces. State of Oregon Department of Environmental Quality. July 2005, 2008, 2012.

3.5 Downstream Analysis

Downstream analysis of the existing systems to determine capacity for use by upstream conveyance systems has not been performed physically or hydraulically modeled. The following provides a list of assumptions that identify the project's impact on the existing system:

- Stormwater runoff draining to Schmeer Road pump station outfall is less than the existing condition. The majority of the runoff from I-5, between Marine Drive and Victory Boulevard, will be routed to PIR pump station outfall via the Expo pump station.
- The existing ditch and culvert that drains to Expo pump station will be evaluated for capacity to drain the upstream water quality facility's high bypass flows.
- Stormwater runoff from the north side of Marine Drive and the areas I-5 west will outflow to outfall NPH-2 through a new enclosed drainage system. Resulting in less surface area draining into the Columbia Slough watershed.

Developed Conditions 4.

4.1 Proposed Drainage Sub-Basins

The limits of the drainage sub-basins are determined by the area draining to the outfall, whether on site or off site area is contributing. The outfalls are defined as the existing pump stations located adjacent to the Columbia Slough channel. Note the Expo Pump station is considered to be part of the PIR Pump station. Within the sub-basins, contributing impervious areas (CIAs) are delineated according to water quality facility to which the stormwater runoff flows. Multiple water quality facilities may outflow to a common outfall, their cumulative areas comprising a single sub-basin, named for this outfall. The description of each outfall and their drainage basins are provided below.

Within the Columbia Slough watershed there are three sub-basins impacted by the project. The outfalls to which these sub-basins flow are pump stations PIR, PEN 2, and Schmeer Road. Figure 4-1 shows the proposed sub-basins and their associated general flow paths.

Table 4-1 summarizes the proposed CIA receiving runoff treatment within The Columbia Slough watershed. A discussion of each sub-basin and the water quality treatment facilities for each basin's CIA follows. The locations of these facilities are shown in Appendix A. Note the areas listed in the table below do not include potential staging areas.

Table 4-1. Proposed I	Drainage Sub-Basins				
Sub-Basin	Total Area (acres)	Proposed Impervious Surfaces (acres)	Proposed Pervious Surfaces (acres)		
PIR	11.6	11.6			
Schmeer Rd	15.0	15.0			
PEN 2	1.5	1.5			

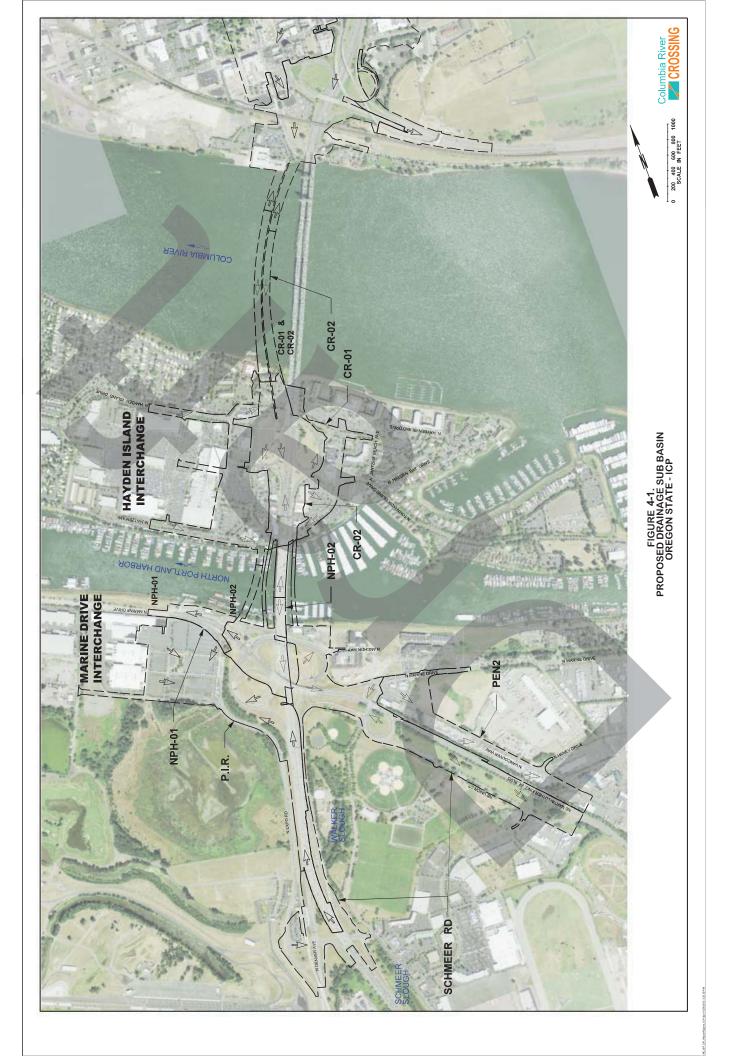
Notes: Numbers may change with project design progression. Pervious surfaces will be included in the next phase of design.

4-2 Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED

PIR Pump Station

Within this Sub-Basin the project will collect and treat stormwater runoff from the I-5 highpoint near Victory Blvd to the lowpoint at Marine Drive, as well as, the new Marine Drive west to I-5 south on ramp. The stormwater will be collected through an enclosed drainage system and constructed wetland. The stormsewer pipes will drain to the roadway lowpoint and continue westerly to the constructed wetland. The pond water quality outflows and high bypass flows will be conveyed to through an existing culvert pipe which outlets into an existing ditch adjacent to the LRT tracks. The existing ditch outflows into a grassed lined channel located on the southern side of Expo Road. The grassed lined channel outflows into a wetland that is regulated by the existing Pump Station west of Expo which drains to the PIR Pump Station Outfall to the Columbia Slough.

NE 13th Pump Station


Within this Sub-Basin the project will collect and treat stormwater runoff from the MLK Boulevard to Vancouver Way off ramp and the Vancouver Way to MLK Boulevard on ramp, as well as Vancouver Way. The stormwater will be collected via an enclosed drainage system and receive water quality treatment through a biofiltration swale with stormwater planters along the local roads. The stormsewer pipes will drain to the roadway lowpoint and continue southeasterly to the biofiltration swale. The water quality outflows and high bypass flows will be conveyed to an existing stormsewer manhole that is part of the existing enclosed drainage system on Vancouver Way. The enclosed drainage system outlets downstream into an open channel that flows to NE 13th pump station outfall to the Columbia Slough.

Schmeer Road Pump Station

There are five proposed water quality facilities upstream of the Schmeer Road Pump Station outfall to the Columbia Slough. A summary of each CIA is included below:

- Within the CS-D facility CIA, the project will collect and treat project stormwater runoff draining from the highpoint at Marine Drive east to the I-5 North entrance ramp via an enclosed drainage system and constructed wetland. The stormsewer pipes will drain to the roadway lowpoint and continue southwesterly to the constructed wetland. The pond water quality outflows and high bypass flows will be conveyed to through an existing pipe that outflows into a grassed lined channel located adjacent to the eastern side of I-5, which is known as Walker Slough. Walker Slough flows south and is connected to Schmeer Slough through an existing underground culvert pipe, several hundred feet long.
- Within the CS-B facility CIA the project will collect and treat project stormwater runoff draining from the highpoints at MLK Boulevard via an enclosed drainage system and constructed wetland. The new stormsewer pipe on MLK Boulevard will included a trunkline off the roadway centerline and inlets along the edge of shoulder with lateral connection to the trunkline. The stormsewer pipe will drain to the roadway lowpoint and continue south to the constructed wetland. The pond water quality outflows and high bypass flows will be conveyed to through an existing pipe that outflows into a grassed lined channel located adjacent to the eastern side of I-5, which is known as Walker Slough.

- Within the CS-C facility CIA the project will collect and treat project stormwater runoff draining from Denver Avenue to I-5 north on-ramp and the I-5 north to Marine Drive west off-ramp, via an enclosed drainage system and biofiltration swale. The new stormsewer pipe will continue south along the existing ramp towards Victory Blvd. to the proposed swale location. Treated water and high bypass flows will be conveyed into a grassed lined channel known was Walker Slough and is located adjacent to the eastern side of I-5 near the of Denver Avenue underpass.
- Within the CS-H facility CIA the project will collect and treat project stormwater runoff draining from the highpoint of I-5 South off ramp to Denver Avenue via an enclosed drainage system and biofiltration swale. The swale outflows into the existing stormsewer pipe, which conveys the treated water and high bypass flows downstream to a large grassed lined channel located adjacent to the eastern side of I-5, known as Schmeer Slough.
- Within the CS-G facility CIA the project will collect and treat stormwater runoff from the highpoint at MLK Boulevard, the off ramp to N. Hayden Meadows Drive and NE Union Court via an enclosed drainage system and constructed wetland with stormwater planters along the local roads. The stormsewer pipes will drain to the roadway lowpoint and continue westerly to the constructed wetland. The pond water quality outflows and high bypass flows will be conveyed to an existing stormsewer manhole that is part of the existing enclosed drainage system adjacent to N. Hayden Meadows Drive. The enclosed drainage system drains southwesterly and outlets downstream into the large grassed lined channel known as Schmeer Slough.

5. Hydrologic and Hydraulic Design

5.1 Flow Control

Flow control is not required for runoff discharged into Columbia Slough.

5.2 Runoff Treatment Design

The primary proposed BMP for water quality facilities in this watershed is the constructed treatment wetland. Constructed wetlands provide the surface area necessary to treat larger volumes of concentrated flows draining from the highways and interchanges. The constructed wetland design is based on Clean Water Services (CWS) guidelines for sizing wetlands. ODOT and COP currently do not have design guidelines available for constructed wetlands.

The water quality treatment facilities volumes and flows were obtained using the guidelines outlined in Chapter 5 of the WSDOT HRM and the COP Stormwater Management Manual.

On a project and sub-basin level all contributing impervious surfaces will receive water quality treatment as defined in Section 3.2. The WSDOT software program, MGSFlood, was used to calculate the required water quality volume necessary to treat the upstream CIA. The CIA was obtained from quantity takeoffs via CAD Microstation design files.

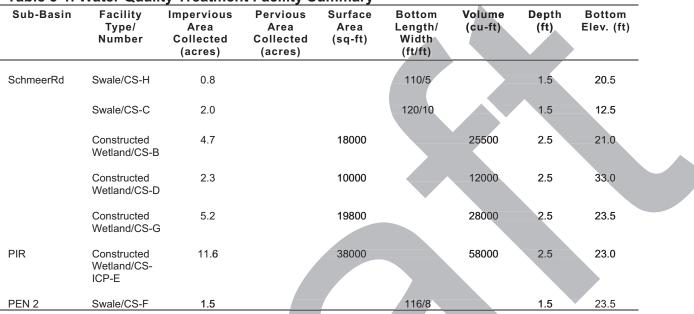
Because no flow control is required for facilities draining into the Columbia Slough, a flow splitter will be installed upstream of each facility. The splitter will convey the water quality flow (from the 2yr-24hr design storm) to the facility while bypassing the high flows to the outfall. The bypass and outlet pipes are assumed to be 12 inch diameter at this stage in design. Following are general assumptions used in the preliminary water quality facility design:

Biofiltration swale:

- MGSFlood Modeling used to calculate Runoff Treatment Design Flow Rate (Qwq)
 - Predeveloped condition = Grass Till for the entire Impervious Area
 - Postdeveloped condition = Impervious Area delineation
 - Water Quality 15-minute Design Discharge for Link Inflow off-line facility from Water Quality Data
 - Swales considered "offline"
- Swale depth
 - 0.33 ft (HRM Table RT.04.2)
 - infrequent mowing
- Assume trapezoidal channel
 - 4:1 side slopes
- Residence time, t

- 5-2 Columbia River Crossing Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED
 - 9 min (HRM pg 5-49)
 - Flow spreaders
 - If b > 6ft than 1 every 50ft and 1 at inlet (HRM pg 5-56)
 - Swale length, L
 - $\circ \quad Min \ 100 \ ft$
 - Freeboard
 - 1 ft (HRM Table TR.04.2)
 - When swales are in parallel there is a 2ft wide divider which runs between

Constructed Wetlands:


- Post developed Cover Type
 - Impervious
- Computational Time step
 - 1 Hour
- Water Quality Treatment Volume
 - Computed Basic Wet Pond Volume
- Compost Amended Soil Depth
 - 12 inches

Maintenance Access Roads: (HRM pgs 5-24 thru 5-25)

- Width = 12 ft straight segments, 15 ft on curves
- Outside turning radius = 40 ft

5.3 Water Quality Treatment BMPs

Water quality facility dimensions and contributing impervious areas are summarized in Table 5-1. Appendix B contains facility sizing calculations and design data for these stormwater facilities. Contributing impervious area for each facility is delineated in Appendix A.

Table 5-1. Water Quality Treatment Facility Summary

Notes: Numbers may change with project design progression. Pervious surfaces will be included in the next phase of design.

5.3.1 Water Quality Facility CS-B

CS-B is designed as a constructed wetland. MGSFlood modeling provided the water quality volume of 25,500 cubic feet. This volume was used with the CWS guidelines for sizing wetlands. This facility has a proposed top elevation of 24.5 ft and bottom elevation range of 20.0 to 21.0 ft. It is approximately 200 feet long and 90 feet wide, on average. It has 5:1 side slopes to the water quality surface level and 3:1 side slopes to the top of freeboard, which is in addition to the ponds capacity for the 25-year storm event. It is anticipated a pond liner will be included in the pond design.

Runoff from approximately 4.7 acres of impervious surface from the most eastern highpoint of MLK Boulevard to the Marine Drive interchange highpoint at I-5 will be conveyed to this constructed wetland located within the existing loop ramp from MLK Boulevard to Union Court. The existing ramp will be removed as part of the project. The conveyance consists of a new stormwater trunk main located near the roadway centerline and inlet lateral connections. The existing conveyance system within the roadway section will be removed.

A flowsplitter will be installed upstream of the facility to route water quality flows to the facility, while diverting high bypass flows downstream. Outflows from the facility and the flowsplitter will be released into the existing 24-inch COP stormwater pipe which outlets into Walker Slough, and ultimately Columbia Slough, through outfall Schmeer Rd. The design assumes that the outflows from the wetland will flow through existing stormwater pipes. It should be noted that survey of the existing stormwater pipe draining to the outfall is not complete. Additional survey will be needed to confirm use of the existing downstream conveyance system.

5-4 Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED

The maintenance access to this pond is not yet confirmed. The wetland is located at the bottom of the MLK Boulevard embankment with limited options for access. It is understood that the existing Union Court road will no longer connect to the existing ramp area. The wetland is also located adjacent to a new pedestrian-bike path that connects users to the COP park area. The new path could provide suitable access to the pond. Discussions with ODOT maintenance have been initiated regarding this option.

The pond location has been maintained throughout the design process. Changes in the pond design have been minimal and related to roadway refinements resulting in changes in CIA and roadway geometry.

5.3.2 Water Quality Facility CS-C

CS-C is designed as a biofiltration swale. MGSFlood modeling provided the water quality flow of 0.18 cfs. This facility has a proposed top elevation of 14.0 ft and bottom elevation 12.5 ft. It is approximately 120 feet long and 10 feet wide, on average. It has 4:1 side slopes to the top of freeboard.

Approximately 2.0 acres of impervious surface from the northbound I-5 to westbound Marine Drive and from Denver Avenue to northbound I-5 ramps will be conveyed to the CS-C biofiltration swale. The grades for the ramps are such that it would be difficult to convey the runoff with the I-5 runoff to the water quality facility CS-ICP-E. As a result, the runoff is conveyed south towards Victory Boulevard to the nearest suitable location for the swale. A flowsplitter located upstream of the swale will divert high bypass flows to the swale's outflow manhole and a new stormwater pipe will be installed to route the runoff for release into Walker Slough and into Outfall Schmeer Rd. The existing stormsewer system will be removed as it no longer functions with the new ramp alignments.

The location of this swale moved several hundred feet south when the original low point for Marine Drive to Denver Avenue off ramp moved further south. As a result, the runoff is routed south along the existing ramp until the open area where the swale is now located. The outlet pipe travels adjacent to an existing shallow depression for a few hundred feet before it reaches the outfall location. Other outfall connection options may be considered with addition survey.

The maintenance access will be from the existing Denver to northbound I-5 shoulder.

5.3.3 Water Quality Facility CS-D

CS-D is designed as a constructed wetland. MGSFlood modeling provided the water quality volume of 12,000 cubic feet. This volume was used with the CWS guidelines for sizing wetlands. This facility has a proposed top elevation of 36.5 ft and bottom elevation range of 32.0 to 33.0 ft. It is approximately 200 feet long and 50 feet wide, on average. It has 5:1 side slopes to the water quality surface level and 3:1 side slopes to the top of freeboard which is in addition to the ponds capacity for the 25-year storm event. It is anticipated a pond liner will be included in the pond design. At this time the facility is over-sized.

Runoff from approximately 2.3 acres of impervious surface from the Marine Drive to northbound I-5 ramp, located between Marine Drive and the northern highpoint, will be conveyed to constructed treatment wetland CS-D. The new ramp will include stormwater

conveyance with inlets. A flowsplitter will be installed upstream of the facility to route water quality flows to the facility while diverting high bypass flows downstream. A new stormwater pipe will be installed to route the runoff downstream to an existing manhole that drains into an existing 21-inch stormsewer pipe which ultimately releases into Walker Slough, and subsequently Columbia Slough, via Outfall Schmeer Rd.

The wetland is currently located between I-5 northbound and the new ramp northbound I-5 with a retaining wall along the eastern side of the facility. The maintenance access road crosses under the ramp bridge section and connects to Vancouver Way. The location of this facility has remained throughout the design process, however other treatment options have been considered. Due to the smaller CIA, a biofiltration swale has been considered, but not adopted. It may be adopted as the design progresses and the potential for dispersion is utilized. At this time the facility is over-sized.

5.3.4 Water Quality Facility CS-ICP-E

MGSFlood modeling provided the water quality volume of 58,000 cubic feet. This volume was used with the CWS guidelines for sizing wetlands. This facility has a proposed top elevation of 26.5 ft and bottom elevation range of 22.0 to 23.0 ft. It is approximately 290 feet long and 130 feet wide, on average. It has 5:1 side slopes to the water quality surface level and 3:1 side slopes to the top of freeboard which is in addition to the ponds capacity for the 25-year storm event. It is anticipated a pond liner will be included in the pond design.

Approximately 11.6 acres of impervious surface from southbound and northbound I-5 between the Victory Boulevard Bridge and the low point located under the Marine Drive interchange, including the impervious area from the Marine Drive to southbound I-5 ramp, will be conveyed to constructed treatment wetland CS-ICP-E. I-5 will be widened and, as a result, new stormwater pipe and inlets will be installed along the edge of shoulder. The existing drainage conveyance system will be removed as its current arrangement will no longer function in the proposed condition. At the low point flanking inlets route runoff west to a drop manhole that outlets into a flowsplitter installed upstream of the facility to route water quality flows to the facility while diverting high bypass flows downstream. The constructed treatment wetland outflow along with the flowsplitter bypass flows will drain into an existing 18-inch stormwater pipe.

Further survey and analysis will be required to verify downstream connections flowing into the drainage channel, located immediately south of Expo. Current as-builts indicate that the 18-inch stormwater pipe outlets into a ditch adjacent to the existing MAX LRT guideway, which conveys flows to the Expo pump station. The Expo pump station outflows into outfall PIR. Both are located within PEN No. 1. Flows draining to the Expo pump station will need to be analyzed for their impact on the channel and associated pump station, which may need to be enlarged to handle the additional concentrated high bypass flows.

A maintenance access road is proposed to provide connection between Marine Drive and the facility. Other options for access are limited due to the existing levee system and LRT. The location of the wetland has remained throughout the design process as it sits in the area of the existing ramp that will be removed. The size of the facility has increased due to an increase in CIA from the southern end of the project at Victory Boulevard. Changes in the roadway design made it possible for areas from the bridge to drain north to the I-5 low point.

5-6 Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED

The CS-ICP-E wetland currently sits at the bottom of the Marine Drive embankment, a location that has been maintained throughout the design process. However, the CS-ICP-E is designed as a modified version of the facility required for the LPA, the CS-E constructed wetland. Though both facilities are very similar in size and shape, the ICP version, CS-ICP-E, will be located further north than the LPA version, CS-E. In the LPA design the Marine Drive alignment is located further south and the loop ramp is removed. For the ICP the loop ramp is maintained and the Marine Drive alignment is located further north. This creates a small and specific area for the CS-ICP-E facility to be located. The modification will be maintained with LPA construction.

5.3.5 Water Quality Facility CS-F

CS-F is designed as a biofiltration swale. MGSFlood modeling provided the water quality flow of 0.12 cfs. This facility has a proposed top elevation of 25.0 ft and bottom elevation 23.5 ft. It is approximately 116 feet long and 8 feet wide, on average. It has 4:1 side slopes to the top of freeboard.

The project will construct new connections between MLK Boulevard and Vancouver Way. Runoff from approximately 1.5 acres of new and resurfaced impervious surface from the westbound MLK Boulevard off ramp to Vancouver Way, and Vancouver Way to westbound MLK Boulevard on ramp will receive treatment from the CS-F biofiltration swale, located adjacent to the connection between MLK Boulevard and Vancouver Way. The new ramps will require new stormsewer pipe and inlets. A flowsplitter will be installed upstream of the facility to route water quality flows to the facility while diverting high bypass flows downstream. Outflows from the swale will drain to an existing manhole identified as outfall PEN2 and located within the existing COP stormwater conveyance system under Vancouver Way. The existing conveyance system continues northeasterly and outlets downstream into an open channel that flows to Pen No. 2 pump station at NE 13th. Additional water quality improvements may be expected as runoff flows through over 7,000 feet of open channel before being pumped to Columbia Slough via the Pen No. 2 Pump Station (see Figure 2-1.2). The location of the swale has remained throughout the design process. There have been a few adjustments to facility size based on changes in roadway and CIA.

5.3.6 Water Quality Facility CS-G

CS-G is designed as a constructed wetland. MGSFlood modeling provided the water quality volume of 25,300 cubic feet. This volume will be used with the CWS guidelines for sizing wetlands. It will have 5:1 side slopes to the water quality surface level and 3:1 side slopes to the top of freeboard which is in addition to the ponds capacity for the 25-year storm event. It is anticipated a pond liner will be included in the pond design. At this time the facility design is in progress.

Runoff from 5.2 acres of impervious surface from MLK Boulevard eastern highpoint to the eastern end of construction and the eastbound MLK Boulevard off ramp to Union Court will be conveyed to the constructed treatment wetland CS-G located between the two roadways. Changes in MLK Boulevard geometry and the addition of the new off ramp will require installation of new stormsewer pipe and inlets to collect runoff. A flowsplitter will be installed upstream of the facility to route water quality flows to the facility while diverting high bypass flows downstream. Flows from the constructed wetland will be released to an existing COP

conveyance system adjacent to Union Court at outlet Schmeer Rd. And will ultimately be pumped to Columbia Slough via the Schmeer Road pump station.

The location of this wetland has remained throughout the design process. Maintenance access to the facility will be off of Union Court. The project will consider reducing the facility size by dispersing sheet flow runoff from the MLK Boulevard to Union Court off ramp shoulder, which would maintain the current drainage while encouraging infiltration and evaporation. Part of the option would be to also implement a shallow biofiltration swale for the areas that cannot be dispersed.

5.3.7 Water Quality Facility CS-H

CS-H is designed as a biofiltration swale. MGSFlood modeling provided the water quality flow of 0.07 cfs. This facility has a proposed top elevation of 22.0 ft and bottom elevation 20.5 ft. It is approximately 110 feet long and 5 feet wide, on average. It has 4:1 side slopes to the top of freeboard.

Approximately 0.8 acres of impervious surface from the southbound I-5 to Denver Avenue offramp high point will be conveyed to the CS-H biofiltration swale. The runoff will be conveyed south from the ramp lowpoint to Victory Boulevard, where the new swale will be located adjacent to the northern back of sidewalk. A flowsplitter located upstream of the swale will divert high bypass flows to the swale's outflow manhole and a new stormwater pipe will be installed to route the runoff for release into the existing downstream conveyance system. The existing stormwater pipe outflows into Schmeer Slough, which outflows into outfall Schmeer Road. The maintenance access will be from the existing shoulder along Victory Boulevard.

The location of this swale was moved from the south side of the Victory Boulevard to accommodate runoff from the new I-5 southbound to Denver Avenue off-ramp that does not drain to the I-5 mainline drainage system.

5.3.8 Other Water Quality Facilities

Following is a summary of other proposed water quality facilities used in the stormwater design:

- Runoff from the new merge lane south of Victory Boulevard (about 0.3 acres) for the ramp from Marine Drive to southbound I-5 would be conveyed to a water quality swale constructed as part of the I-5 Delta Park project. This swale has adequate capacity to handle the additional runoff. In addition there is approximately 3.7 acres of existing impervious surface which will also be conveyed to, and treated by, this existing swale.
- Runoff from approximately 3.9 acres of proposed new, rebuilt, and existing local streets and contiguous sidewalks within the CIA would be treated using a mix of stormwater planter strips and proprietary systems such as cartridge filters.
- Runoff from about 1.1 acres of the bike-pedestrian pathway that is physically separated from the street network will likely be shed to adjacent landscaped areas where it will infiltrate and/or evaporate.

5-8 Columbia River Crossing - Stormwater Design Report VOLUME II: COLUMBIA SLOUGH WATERSHED

As described earlier, soils in this area are generally poorly drained. However, boreholes in the area show that the soils can be quite variable and, as the project design advances, site-specific geotechnical investigations may prove that one or more of the locations proposed for water quality facilities may be suitable for infiltration.

5.4 Gutter Design

The inlet spacing has been designed according to ODOT's Hydraulic Manual, Appendix D. The maximum spacing between inlets was 400 feet. Inlet spacing calculation spreadsheets provided by WSDOT were used calculate spread and bypass flows. The rational method with a 5-minute time of concentration and 10-year rainfall intensity was used to calculate upstream flows for inlet catchment areas. Runoff spread was restricted to the highway shoulder area. Bypass flows and spread width where also considered at superelevation transitions and ramp ends.

The maximum spacing between stormwater manholes for city streets is 500 feet per the COP Sewer and Drainage Facilities Design Manual. Inlets are installed with lateral connections to the trunkline.

The inlet spacing spreadsheets are presented in Appendix B-3.

5.5 Sag Design

The inlet spacing design does not include Sag design for this submittal. However, inlets at sag locations will be designed according to ODOT's Hydraulic Manual, Appendix D Section 6.0.

5.6 Enclosed Drainage Design

The enclosed drainage systems for Marine Drive interchange have been designed according to the ODOT's Hydraulic Manual, Appendix F to convey the 25-year event flows. City streets will be designed according to the COP Sewer and Drainage Facilities Design Manual. Several of the streets include stormwater planters for water quality treatment. The planters drain into the existing trunk lines where practical, otherwise, new trunk lines have been detailed.

The current design was developed through the WSDOT Storm Sewer Design calculation spreadsheets, which use the rational method to calculate contributing area flows and the manning's equation to determine pipe parameters. Drainage plans showing the storm sewer pipe locations, drainage structures, water quality facilities, and outfalls area included in Appendix C. The storm sewer design spreadsheets are presented in Appendix B-5.

The following list contains assumptions used in the conveyance system design:

- A ballasted LRT track proposed between the existing Expo station and south end of the combined LRT-arterial bridge across North Portland Harbor. Perforated underdrains serving existing ballasted track at the Expo station will be extended to collect runoff from the new guideway: the existing track underdrain system discharges to the channel located immediately south of the Expo (outfall PIR).
- The new conveyance system, constructed as part of the CRC project, will enable some of the runoff that currently flows to the outfall Schmeer Rd. (PEN 2) to be re-routed to PIR

(PEN 1). The runoff being re-routed would be from the I-5 mainline between Victory Boulevard and Marine Drive and will be treated by CS-ICP-E constructed treatment wetland. The primary reasons for this strategy are:

- 1. The west side of the proposed interchange provides the largest uninterrupted open area for water quality facilities.
- 2. MCDD has requested that CRC minimize runoff from the project to the Pen No. 2 surface water system to provide greater flexibility for handling increased runoff from potential redevelopment of the Hayden Meadows race track.

5.7 Culvert Design

No new, replaced, or modified culverts are proposed at this time. Any culvert design would be designed according to ODOT's Hydraulic Manual.

5.8 Ditch Design

No new, replaced, or modified ditches are proposed at this time. Any ditch design would be designed according to ODOT's Hydraulic Manual.

5.9 Downstream Analysis

See Section 4.5.

5.10 Level of Retrofit

No retrofits of existing systems are proposed at this time. Any retrofit design would be designed according to ODOT's Hydraulic Manual. Note: the existing drainage basins have been modified in the proposed condition to route stormwater from Schmeer Rd. Pump Station to the PIR pump station, as discussed in Section 5.6.

6. Permits and Associated Reports

Detailed environmental analysis can be found in the Biological Assessment, available upon request. The Biological Opinion can be found in Appendix H.

6.1 Permits and Approvals

A list of specific permits issued by WSDOT and ODOT for the I-5 ROW can be found in Appendix L.

6.2 Easements

At the current stage of design no additional easements to accommodate drainage or slopes are required. Though it is not currently anticipated, additional ROW may be required for construction or maintenance at the next phase of design.

6.3 Additional Reports or Studies

Additional reports and studies can be found in the appendices of the Biological Assessment.

7. Inspection and Maintenance Summary

Continued inspection and maintenance of the permanent water quality and flow control facilities is vital to the long-term protection of receiving water bodies. While detailed procedures will be developed as part of final design and associated design reports, Appendix L contains general inspection and maintenance requirements contained in the ODOT Hydraulics Manual¹¹ and WSDOT HRM¹².

It is assumed that a vactor trunk will be required to provide maintenance for the water quality facilities described in this report. An access road, 12 feet wide on tangents and 15 feet wide on curves, has been placed in such a way that facility access is feasible. Biofiltration swales will be mowed to maintain the depth of grass necessary for them to provide treatment.

Manufacturers^{13,14} of some proprietary facilities recommend one inspection per year and maintenance every 1-3 years for each facility. Historically, each facility would require approximately 30 minutes to remove debris and accumulated sediments, and replace necessary components. Facilities located within the LRT guideway, will require maintenance activities to be performed within a limited time period, generally during the early AM hours to avoid adversely affecting transit operations.

The project has participated in preliminary meetings with WSDOT, ODOT, and C-TRAN maintenance staff regarding maintenance of the stormwater facilities in terms of access and anticipated obstacles to meeting maintenance requirements due to site grading and access constraints. There has also been some discussion of using pedestrian bike path facilities for maintenance access for areas with few options for access from the highway.

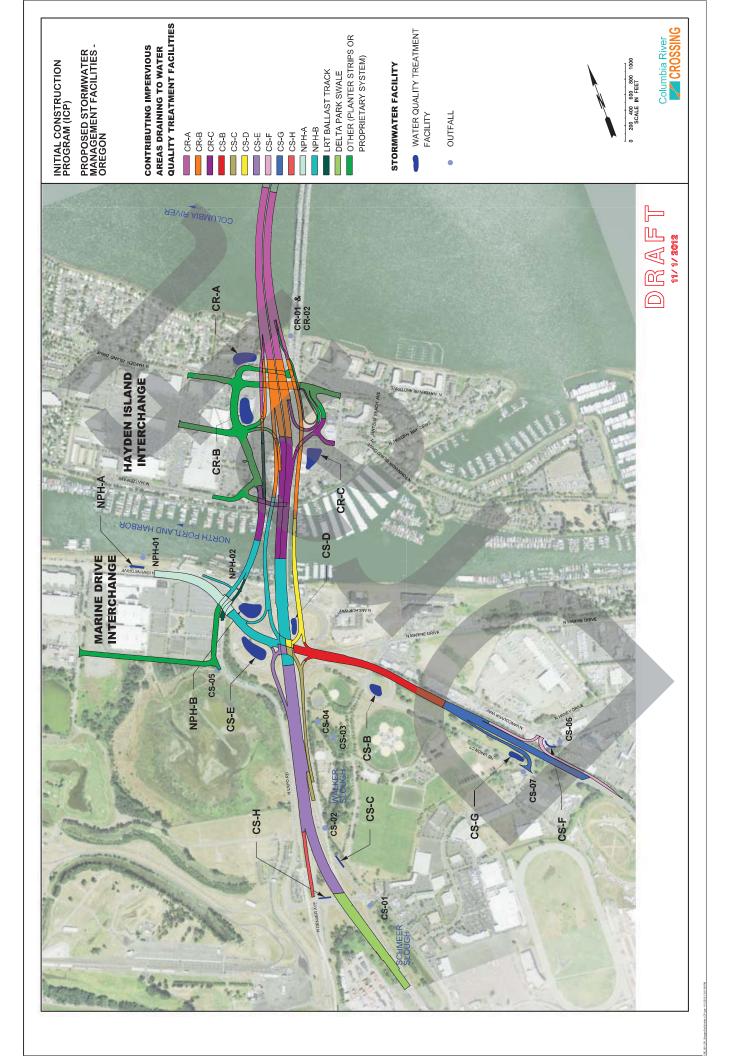
¹¹ Hydraulics Manual, Chapter 14 (Draft). Prepared by the Oregon Department of Transportation, Highway Division. 2007.

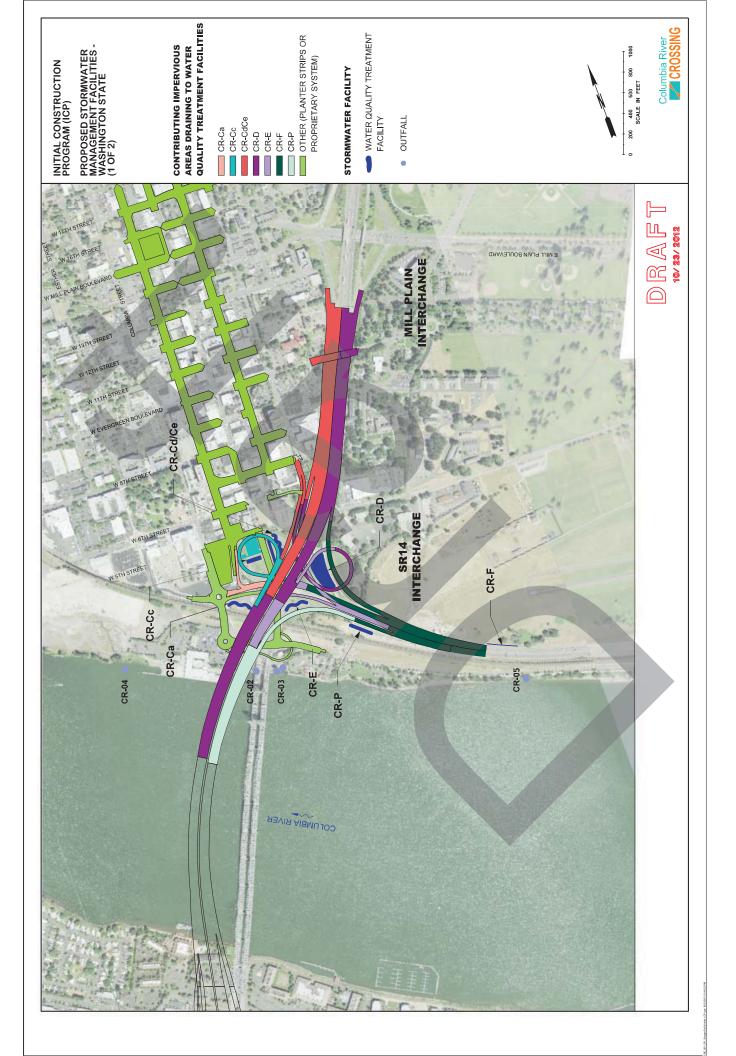
 ¹² Highway Runoff Manual. Prepared by Washington State Department of Transportation. Publication M31-16.01. June 2008.
 ¹³ Contech Engineered Solutions LLC. Stormwater Management StormFilter: Product Description. (2012) Retrieved from

http://www.conteches.com/Products/Stormwater-Management/Treatment/Stormwater-Management-StormFilter.aspx.

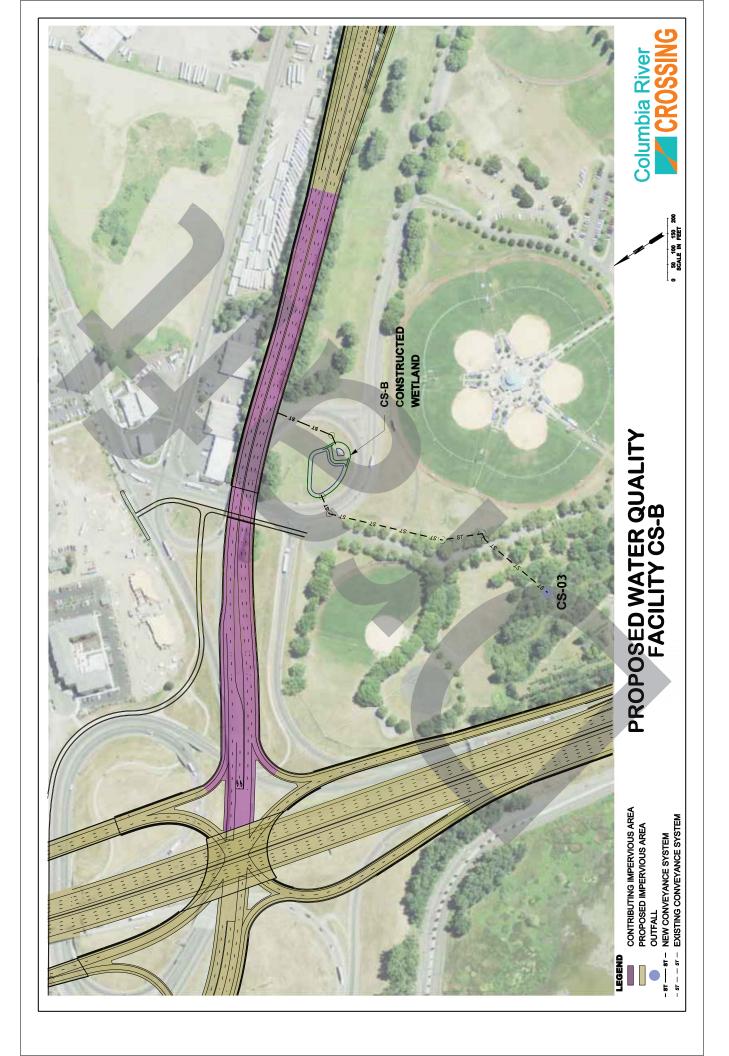
¹⁴ Filterra Bioretention Systems. AmeriCast. Frequently Asked Questions: Maintenance. Retrieved from http://www.filterra.com/index.php/faq/category/C7/.

8. References

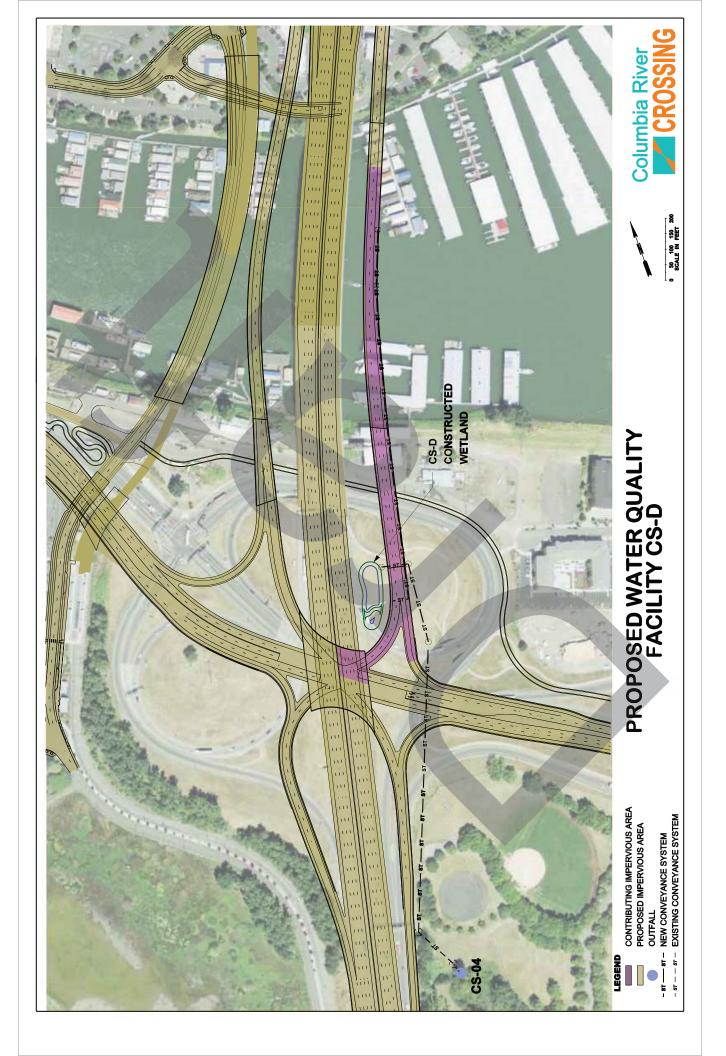

- City of Portland, May 2006. *Sewer and Drainage Facilities Design Manual*. Bureau of Environmental Services. Public Review DRAFT.
- City of Portland, 2008. *Portland Stormwater Management Manual*. Bureau of Environmental Services. August 1, 2008.
- Columbia River Crossing (CRC). 2011. DRAFT Water Quality and Hydrology Technical Report for the Final Environmental Impact Statement. Submitted by Parametrix, Inc.
- Columbia River Crossing (CRC). 2011. *Final Environmental Impact Statement (FEIS)*. Submitted by Parametrix, Inc.
- DEQ (Oregon Department of Environmental Quality). 1998. Columbia Slough Total Maximum Daily Loads (TMDLs) For: Chlorophyll a, Dissolved Oxygen, pH, Phosphorus, Bacteria, DDE/DDT, PCBs, Pb, Dieldrin and 2,3,7,8 TCDD. September 1998.
- DEQ (Oregon Department of Environmental Quality). 2009. 2004/2006 Integrated Report Database. Available at <u>http://www.deq.state.or.us/wq/assessment/rpt0406/search.asp#db</u>. Accessed May 2009.
- DEQ (Oregon Department of Environmental Quality) and Ecology (Washington Department of Ecology). 2002. Total Maximum Daily Load (TMDL) for Lower Columbia River Total Dissolved Gas. Prepared by Paul J. Pickett and Russell Harding. September 2002. Washington State Department of Ecology Publication No. 02-03-004. Available at http://www.ecy.wa.gov/biblio/0203004.html. Accessed January 26, 2010.
- Ecology (Washington Department of Ecology). 2009a. *Washington State's Water Quality* Assessment [303(d)]. Available at <u>http://www.ecy.wa.gov/programs/wq/303d/</u>. Accessed July 8, 2009.
- Ecology (Washington Department of Ecology). 2009c. General Use Level Designation for Basic (TSS), Enhanced, & Oil Treatment & Conditional Use Level Designation for Phosphorus Treatment for Americast's Filterra®. November 2006 (revised December 2009).
- Ecology (Washington State Department of Ecology). 2005. *Stormwater Management Manual for Western Washington*. Water Quality Program, Olympia, Washington.
- EPA (Environmental Protection Agency). 1991. *Total Maximum Daily Loading (TMDL) to Limit Discharges of 2,3,7,8—TCDD (Dioxin) to the Columbia River Basin. February 1991.* Available at <u>http://yosemite.epa.gov/R10/water.nsf/ac5dc0447a281f4e882569ed0073521f/062e4bb7e 44b8e90882569a700767e8d/\$FILE/columbia%20dioxin%20tmdl.PDF</u>. Accessed January 26, 2010.

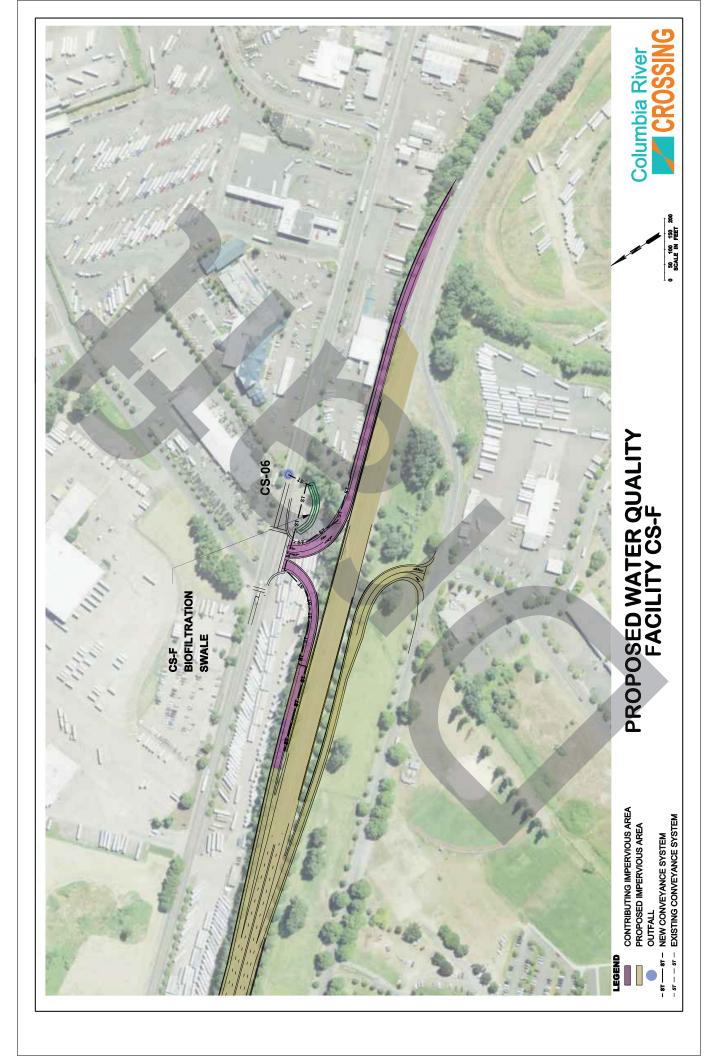

- FAA (Federal Aviation Administration). 2004. Hazardous Wildlife Attractants on or near Airports. U.S. Department of Transportation, Federal Aviation Administration. Advisory Circular 150/5200-33A. July 27, 2004
- FHWA (Federal Highway Administration). 1984. *Hydraulic Engineering Circular No. 12, Drainage of Highway Pavements*. United States Department of Transportation, Federal Highway Administration.
- FHWA (Federal Highway Administration). May 2002. *Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring*. Department of Transportation Publications Warehouse. Landover, Maryland.
- McFarland, W.D. and D.S. Morgan. 1996. Description of the Groundwater Flow System in the Portland Basin, Oregon and Washington. USGS, Water Supply, Paper 2470-A.
- NMFS (National Marine Fisheries Service). August 13, 2008. Revisions to Standard Local Operating Procedures for Endangered Species to Administer Maintenance or Improvement of Road, Culvert, Bridge and Utility Line Actions Authorized or Carried Out by the U.S. Army Corps of Engineers in the Oregon (SLOPES IV Roads, Culverts, Bridges and Utility Lines). National Marine Fisheries Service, Northwest Region.
- NMFS (National Marine Fisheries Service). January 19, 2011. Endangered Species Act Section 7 Biological Opinion and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Conservation Recommendations for the Columbia River Crossing (Federal #: HPP S001(250), Lower Columbia–Clatskanie Rivers (4th field HUC 17080003), Lower Columbia River (4th field HUC 17080006), and Lower Willamette River (4th field HUC 17090012), Oregon and Washington. United States Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Region, Seattle, Washington.
- NOAA (National Oceanic and Atmospheric Administration). 2009. Local Climate Data from Portland Airport. Available at <u>http://www.wrh.noaa.gov/pqr/pdxclimate</u>. Accessed August 2009.
- NRCS (National Resources Conservation Service). 2011. Web Soil Survey. Available at <u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>. Accessed March 15, 2011.
- ODOT (Oregon Department of Transportation). 2005. *Hydraulics Manual*. Engineering and Asset Management Unit, Geo-Environmental Section.
- ODOT (Oregon Department of Transportation). 2009. Stormwater Management Program, Geo-Environmental Bulletin GE09-02(B). January 27, 2009.
- ODOT (Oregon Department of Transportation). 2011. Stormwater Management Program Contributing Impervious Area (CIA). Available at <u>http://www.oregon.gov/ODOT/HWY/GEOENVIRONMENTAL/storm_management_program_cia.shtml</u>. Accessed March 14, 2011.

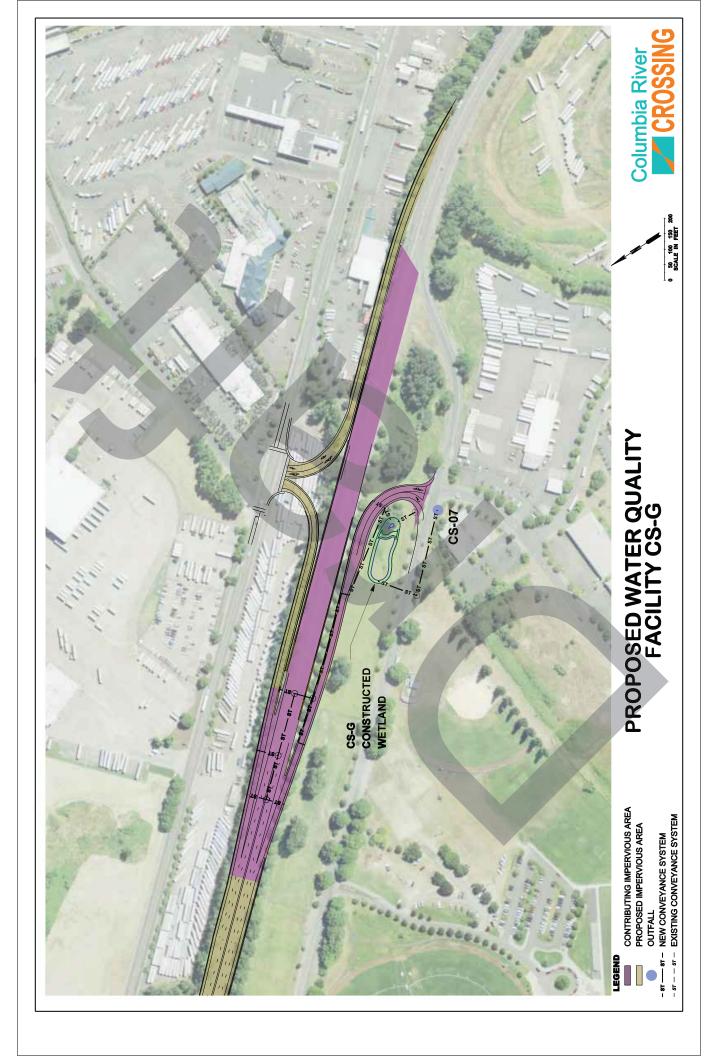

- SCS (Soil Conservation Service). November 1972. *Soil Survey of Clark County, Washington*. United States Department of Agriculture, Soil Conservation Service, in cooperation with the Washington Agricultural Experiment Station.
- SCS (Soil Conservation Service). August 1983. Soil Survey of Multnomah County, Oregon. United States Department of Agriculture, Soil Conservation Service, in cooperation with Oregon Agricultural Experiment.
- Sound Transit. 1999. Central Link Light Rail Transit Project, Sound Transit, Biological Assessment. November 1999.
- WSDOT (Washington State Department of Transportation). 2008. Aviation Stormwater Design Manual. Version M 3041.00. <u>http://www.wsdot.wa.gov/aviation/AirportStormwaterGuidanceManual.htm</u>. December 2008.
- WSDOT (Washington State Department of Transportation). 2011. *Highway Runoff Manual*. Version M 31-16.03. November 2011.
- WSDOT (Washington State Department of Transportation). 2010. *Hydraulics Manual*. Version M 23-03.03. June 2010.

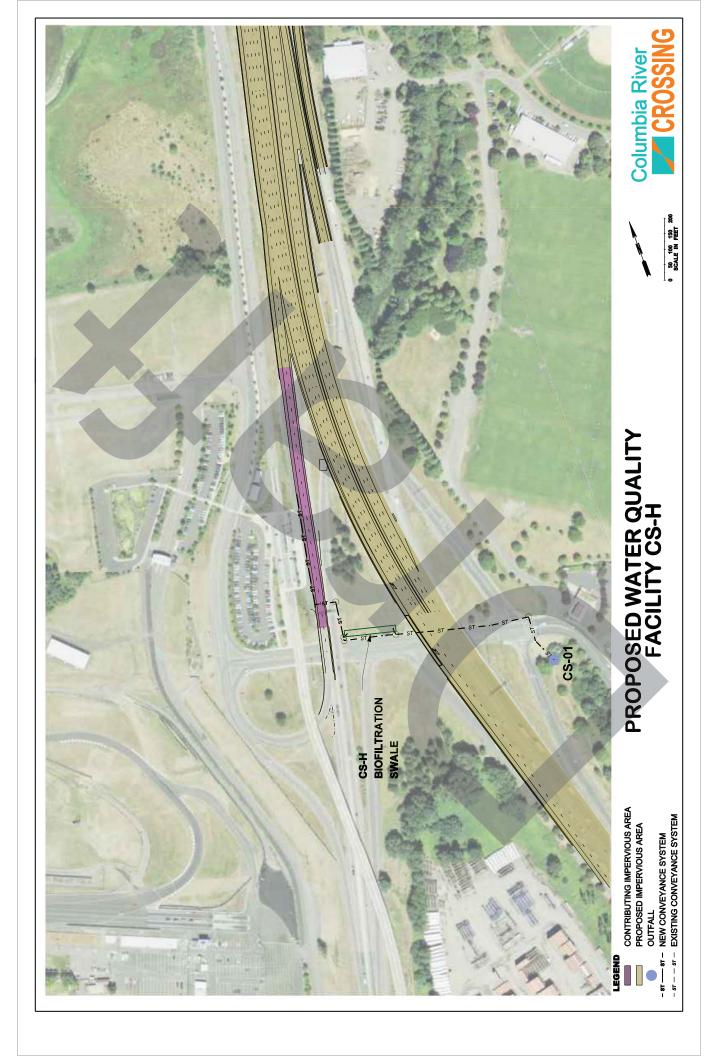

APPENDIX A


Drainage Basin Maps and Area Calculations









APPENDIX B

Calculations and Program Output

APPENDIX B-1

MGSFlood Output

Program Version: MGSFlood 4.09 Program License Number: 200210003 Run Date: 10/29/2012 1:20 PM

Input File Name: CS-B Wetland_ICP.fld Project Name: Constructed Wetland CS-B Analysis Title: ICP Design Comments: Marine Drive I/C 30% Design. CS-03 Outfall, Columbia Slough Watershed PRECIPITATION INPUT
Computational Time Step (Minutes): 60
Extended Precipitation Timeseries Selected Climatic Region Number: 19
Full Period of Record Available used for RoutingPrecipitation Station :97004005 Vancouver 40 in 5min 10/01/1939-10/01/2060Evaporation Station :971040 Vancouver 40 in MAPEvaporation Scale Factor :0.750
HSPF Parameter Region Number: 1 HSPF Parameter Region Name : USGS Default
********* Default HSPF Parameters Used (Not Modified by User) ************************************

SCENARIO: PREDEVELOPED Number of Subbasins: 2
Subbasin : Predeveloped Target Condition Area(Acres)
Till Forest0.000Till Pasture0.000Till Grass4.700Outwash Forest0.000Outwash Pasture0.000Outwash Grass0.000Wetland0.000Green Roof0.000User 20.000Impervious0.000Subbasia Tatal4.700
Subbasin Total 4.700

Subbasin :	Facility Location SA
-	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.370
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	0.000
Subbasin Total	0.370

-----SCENARIO: POSTDEVELOPED

Number of Subbasins: 2

Subbasin	: Post Target
	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.000
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	4.700

Subbasin Total

4.700

------ Subbasin : CS-B Wetland SA --------

	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.000
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	0.370
Subbasin Total	0.370

-----SCENARIO: PREDEVELOPED Number of Links: 1

Link Name: Facility Location Link Type: Copy Downstream Link: None

-----SCENARIO: POSTDEVELOPED Number of Links: 1

Link Name: CS-B Constructed Wetland Link Type: Copy Downstream Link: None

-----SCENARIO: PREDEVELOPED Number of Subbasins: 2 Number of Links: 1

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 2 Number of Links: 1

-----SCENARIO: PREDEVELOPED

Number of Links: 1

*********** Link: Facility Location

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 802.58 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

-----SCENARIO: POSTDEVELOPED

Number of Links: 1

********** Link: CS-B Constructed Wetland

Basic Wet Pond Volume (91% Exceedance): 22840. cu-ft Computed Large Wet Pond Volume, 1.5*Basic Volume: 34261. cu-ft

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 1721.07 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

Scenario Predeveloped Compliance Link: Facility Location Scenario Postdeveloped Compliance Link: CS-B Constructed Wetland

*** Point of Compliance Flow Frequency Data ***

Recurrence Interval Computed Us	sing Gringorten Plotting Position
---------------------------------	-----------------------------------

Prede	velopment Runoff	Postdevelopn	nent Runoff
Tr (Years)	Discharge (cfs)	Tr (Years) Disch	arge (cfs)
2-Year	0.292	2-Year	1.330
5-Year	0.513	5-Year	1.797
10-Year	0.731	10-Year	2.158
25-Year	1.022	25-Year	2.371
50-Year	1.268	50-Year	2.779
100-Year	1.288	100-Year	2.918
200-Year	1.293	200-Year	3.036
** Pocord too	Short to Compute Dec	k Discharge for Those Pr	ourrance Intervale

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

**** Flow Duration Performance According to Dept. of Ecology Criteria ****

Excursion at Predeveloped 1/2Q2 (Must be Less Than 0%):	1164.4%	FAIL
Maximum Excursion from 1/2Q2 to Q2 (Must be Less Than 0%):	6457.8%	FAIL
Maximum Excursion from Q2 to Q50 (Must be less than 10%):	99999.0%	FAIL
Percent Excursion from Q2 to Q50 (Must be less than 50%):	100.0% FAIL	

POND FAILS ONE OR MORE DURATION DESIGN CRITERIA: FAIL

Program Version: MGSFlood 4.09 Program License Number: 200210003 Run Date: 10/29/2012 11:45 AM

Input File Name: Project Name: Analysis Title: ICP De Comments:	CS-C Swale_ICP.fld CS-C Swale esign Marine Drive I/C 30% Design. CS-02 Outfall, Columbia Slough Watershed PRECIPITATION INPUT
Computational Time St	tep (Minutes): 15
Extended Precipitation Climatic Region Numb	
Full Period of Record A Precipitation Station : Evaporation Station Evaporation Scale Fac	
HSPF Parameter Regi HSPF Parameter Regi	
******** Default HSP	PF Parameters Used (Not Modified by User) **************
**********************	ATERSHED DEFINITION ************************
SCEN Number of Subbasins:	ARIO: PREDEVELOPED
Number of Subbasins.	
	edeveloped Target Condition Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	2.000
Outwash Forest Outwash Pasture	0.000 0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2 Impervious	0.000 0.000
·	
Subbasin Total	2.000

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 1

Subbasin	: Post Target
	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.000
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	2.000
Subbasin Total	2.000

-----SCENARIO: PREDEVELOPED Number of Links: 1

Link Name: Facility Location Link Type: Copy Downstream Link: None

-----SCENARIO: POSTDEVELOPED Number of Links: 1

Link Name: CS-C Biofiltration Swale Link Type: Copy Downstream Link: None

-----SCENARIO: PREDEVELOPED Number of Subbasins: 1 Number of Links: 1

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Number of Links: 1

**********Water Quality Facility Data ************

-----SCENARIO: PREDEVELOPED

Number of Links: 1

********** Link: Facility Location

Infiltration/Filtration Statistics-----Total Runoff Volume (ac-ft): 318.06 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

-----SCENARIO: POSTDEVELOPED

Number of Links: 1

********** Link: CS-C Biofiltration Swale

15-Minute Timestep, Water Quality Treatment Design Discharge On-line Design Discharge Rate (91% Exceedance): 0.28 cfs Off-line Design Discharge Rate (91% Exceedance): 0.16 cfs ********

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 688.13 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

Scenario Predeveloped Compliance Link: Facility Location Scenario Postdeveloped Compliance Link: CS-C Biofiltration Swale

*** Point of Compliance Flow Frequency Data *** Recurrence Interval Computed Using Gringorten Plotting Position

Predev Tr (Years)	velopment Runoff Discharge (cfs)	Postdevelopme Tr (Years) Discha	ent Runoff rge (cfs)	
2-Year	0.153	2-Year	0.731	
5-Year	0.325	5-Year	0.971	
10-Year	0.447	10-Year	1.164	
25-Year	0.643	25-Year	1.472	
50-Year	0.884	50-Year	1.732	
100-Year	1.000	100-Year	2.072	
200-Year	1.087	200-Year	2.209	

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

Excursion at Prede Maximum Excursic Maximum Excursic	Performance According to Dept. of Ecology veloped ½Q2 (Must be Less Than 0%): n from ½Q2 to Q2 (Must be Less Than 0%): n from Q2 to Q50 (Must be less than 10%): from Q2 to Q50 (Must be less than 50%):	2404.5% FAIL 11969.2% FAIL 99999.0% FAIL 100.0% FAIL
POND FAILS ONE	OR MORE DURATION DESIGN CRITERIA: F	AIL

Program Version: MGSFlood 4.09 Program License Number: 200210003 Run Date: 10/29/2012 1:14 PM

Input File Name: Project Name: Analysis Title: ICP De Comments:	CS-D Wetland_ICP.fld Constructed Wetland CS-D esign Marine Drive I/C 30% Design. CS-04 Outfall, Columbia Slough Watershed PRECIPITATION INPUT
Computational Time St	tep (Minutes): 60
Extended Precipitation Climatic Region Numbe	
Full Period of Record A Precipitation Station : Evaporation Station : Evaporation Scale Fact	
HSPF Parameter Region HSPF Parameter Region	
******** Default HSP	F Parameters Used (Not Modified by User) **************
******	ATERSHED DEFINITION *****************************
	ARIO: PREDEVELOPED
Number of Subbasins:	
	edeveloped Target Condition Area(Acres)
Till Forest	0.000
Till Pasture Till Grass	0.000 2.300
Outwash Forest	0.000
Outwash Pasture Outwash Grass	0.000 0.000
Wetland	0.000
Green Roof	0.000
User 2 Impervious	0.000 0.000
Subbasin Total	2.300

Subbasin	: Facility Location SA
-	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.200
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	0.000
Subbasin Total	0.200

-----SCENARIO: POSTDEVELOPED

Number of Subbasins: 2

Subbasin	: Post Target
	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.000
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	2.300

Subbasin Total

----- Subbasin : CS-D Wetland SA ------

2.300

	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.000
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	0.200
Subbasin Total	0.200

-----SCENARIO: PREDEVELOPED Number of Links: 1

Link Name: Facility Location Link Type: Copy Downstream Link: None

-----SCENARIO: POSTDEVELOPED Number of Links: 1

Link Name: CS-D Constructed Wetland Link Type: Copy Downstream Link: None

-----SCENARIO: PREDEVELOPED Number of Subbasins: 2 Number of Links: 1

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 2 Number of Links: 1

-----SCENARIO: PREDEVELOPED

Number of Links: 1

********** Link: Facility Location

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 395.75 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

-----SCENARIO: POSTDEVELOPED

Number of Links: 1

*********** Link: CS-D Constructed Wetland

Basic Wet Pond Volume (91% Exceedance): 11263. cu-ft Computed Large Wet Pond Volume, 1.5*Basic Volume: 16894. cu-ft

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 848.65 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

Scenario Predeveloped Compliance Link: Facility Location Scenario Postdeveloped Compliance Link: CS-D Constructed Wetland

*** Point of Compliance Flow Frequency Data *** Recurrence Interval Computed Using Gringorten Plotting Position

Prede Tr (Years)	evelopment Runoff Discharge (cfs)	Postdevelopment Runoff Tr (Years) Discharge (cfs)			
2-Year	0.144	2-Year	0.656		
5-Year	0.253	5-Year	0.886		
10-Year	0.361	10-Year	1.064		
25-Year	0.504	25-Year	1.169		
50-Year	0.625	50-Year	1.370		
100-Year	0.635	100-Year	1.439		
200-Year	0.638	200-Year	1.497		
		k Discharge for These Re			

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

**** Flow Duration Performance According to Dept. of Ecology Criteria ****

Excursion at Predeveloped 1/2Q2 (Must be Less Than 0%):	1164.4%	FAIL
Maximum Excursion from 1/2Q2 to Q2 (Must be Less Than 0%):	6457.8%	FAIL
Maximum Excursion from Q2 to Q50 (Must be less than 10%):	99999.0%	FAIL
Percent Excursion from Q2 to Q50 (Must be less than 50%):	100.0% FAIL	

POND FAILS ONE OR MORE DURATION DESIGN CRITERIA: FAIL

Program Version: MGSFlood 4.09 Program License Number: 200210003 Run Date: 10/29/2012 12:55 PM

Input File Name: CS-E Wetland_ICP.fld Project Name: Constructed Wetland CS-ICP-E Analysis Title: ICP Design Comments: Marine Drive I/C 30% Design. Outfall CS-05, Columbia Slough Watershed. PRECIPITATION INPUT
Computational Time Step (Minutes): 60
Extended Precipitation Timeseries Selected Climatic Region Number: 19
Full Period of Record Available used for RoutingPrecipitation Station :97004005 Vancouver 40 in_5min 10/01/1939-10/01/2060Evaporation Station :971040 Vancouver 40 in MAPEvaporation Scale Factor :0.750
HSPF Parameter Region Number: 1 HSPF Parameter Region Name : USGS Default
********** Default HSPF Parameters Used (Not Modified by User) ************************************
Number of Subbasins: 2
Subbasin : Predeveloped Target Condition Area(Acres)
Till Forest 0.000 Till Pasture 0.000 Till Grass 11.600 Outwash Forest 0.000 Outwash Pasture 0.000 Outwash Grass 0.000 Wetland 0.000 User 2 0.000 Impervious 0.000
Subbasin Total 11.600

Subbasin : CS-ICP-E Facility SA				
	Area(Acres)			
Till Forest	0.000			
Till Pasture	0.000			
Till Grass	0.810			
Outwash Forest	0.000			
Outwash Pasture	0.000			
Outwash Grass	0.000			
Wetland	0.000			
Green Roof	0.000			
User 2	0.000			
Impervious	0.000			
Subbasin Total	0.810			

-----SCENARIO: POSTDEVELOPED

Number of Subbasins: 2

Subbooin	· Doot Torgot
Subbasin	: Post Target
	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.000
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	11.600

Subbasin Total

11.600

------ Subbasin : CS-ICP-E Wetland SA ------------Area(Acres) -------Till Forest 0.000

Till Pasture	0.000	
Till Grass	0.000	
Outwash Forest	0.000	
Outwash Pasture	0.000	
Outwash Grass	0.000	
Wetland	0.000	
Green Roof	0.000	
User 2	0.000	
Impervious	0.810	
Subbasin Total	0.810	

-----SCENARIO: PREDEVELOPED Number of Links: 1

Link Name: Facility Location Link Type: Copy Downstream Link: None

-----SCENARIO: POSTDEVELOPED Number of Links: 1

Link Name: CS-ICP-E Constructed Wetland Link Type: Copy Downstream Link: None

-----SCENARIO: PREDEVELOPED Number of Subbasins: 2 Number of Links: 1

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 2 Number of Links: 1

-----SCENARIO: PREDEVELOPED

Number of Links: 1

********** Link: Facility Location

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 1964.51 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

-----SCENARIO: POSTDEVELOPED

Number of Links: 1

********** Link: CS-ICP-E Constructed Wetland

Basic Wet Pond Volume (91% Exceedance): 55907. cu-ft Computed Large Wet Pond Volume, 1.5*Basic Volume: 83861. cu-ft

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 4212.71 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

Scenario Predeveloped Compliance Link: Facility Location Scenario Postdeveloped Compliance Link: CS-ICP-E Constructed Wetland

*** Point of Compliance Flow Frequency Data ***

Recurrence Interval Computed Using Gringorten Plotting Position

Prede Tr (Years)	velopment Runoff Discharge (cfs)	·			
2-Year 5-Year 10-Year 25-Year 50-Year	0.715 1.256 1.790 2.501 3.103	2-Year 5-Year 10-Year 25-Year 50-Year	3.256 4.399 5.283 5.805 6.803		
100-Year 200-Year	3.153 3.165	100-Year 200-Year k Discharge for These Rec	7.144 7.432		

Record too Short to Compute Peak Discharge for These Recurrence Intervals

**** Flow Duration Performance According to Dept. of Ecology Criteria ****

Excursion at Predeveloped 1/2Q2 (Must be Less Than 0%):	1164.4%	FAIL
Maximum Excursion from 1/2Q2 to Q2 (Must be Less Than 0%):	6457.8%	FAIL
Maximum Excursion from Q2 to Q50 (Must be less than 10%):	99999.0%	FAIL
Percent Excursion from Q2 to Q50 (Must be less than 50%):	100.0% FAIL	

POND FAILS ONE OR MORE DURATION DESIGN CRITERIA: FAIL

Program Version: MGSFlood 4.09 Program License Number: 200210003 Run Date: 10/29/2012 11:46 AM

Input File Name: Project Name: Analysis Title: ICP De Comments:	Marine Drive I/	CP.fld C 30% Design. RECIPITATION I		fall, Colum	oia Slough W	/atershed
Computational Time Ste	en (Minutes):	15				
Extended Precipitation Climatic Region Numbe	Timeserie <mark>s Sele</mark> er: 19	ected				
Full Period of Record A Precipitation Station : Evaporation Station : Evaporation Scale Factor	970040 971040	r Routing 005 Vancouver 4 0 Vancouver 40 i		0/01/1939-1	0/01/2060	
HSPF Parameter Regio HSPF Parameter Regio		1 USGS Default				
********* Default HSPF						
******************************* WA	TERSHED DEF	INITION ********	************	*		
Number of Subbasins:						
Subbasin : Pre	edeveloped Targ -Area(Acres)					
Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Green Roof User 2 Impervious	0.000 0.000 1.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000					
Subbasin Total	1.500					

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 1

Subbasin : Post Target	
	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.000
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	1.500
Subbasin Total	1.500

-----SCENARIO: PREDEVELOPED Number of Links: 1

Link Name: Facility Location Link Type: Copy Downstream Link: None

-----SCENARIO: POSTDEVELOPED Number of Links: 1

Link Name: CS-F Biofiltration Swale Link Type: Copy Downstream Link: None

-----SCENARIO: PREDEVELOPED Number of Subbasins: 1 Number of Links: 1

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Number of Links: 1

**********Water Quality Facility Data ************

-----SCENARIO: PREDEVELOPED

Number of Links: 1

********** Link: Facility Location

Infiltration/Filtration Statistics-----Total Runoff Volume (ac-ft): 238.54 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

-----SCENARIO: POSTDEVELOPED

Number of Links: 1

********** Link: CS-F Biofiltration Swale

15-Minute Timestep, Water Quality Treatment Design Discharge On-line Design Discharge Rate (91% Exceedance): 0.21 cfs Off-line Design Discharge Rate (91% Exceedance): 0.12 cfs

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 516.10 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

Scenario Predeveloped Compliance Link: Facility Location Scenario Postdeveloped Compliance Link: CS-F Biofiltration Swale

*** Point of Compliance Flow Frequency Data *** Recurrence Interval Computed Using Gringorten Plotting Position

Predev Tr (Years)	velopment Runoff Discharge (cfs)	Postdevelopme Tr (Years) Discha	ent Runoff rge (cfs)	
2-Year	0.115	2-Year	0.549	
5-Year	0.244	5-Year	0.728	
10-Year	0.335	10-Year	0.873	
25-Year	0.482	25-Year	1.104	
50-Year	0.663	50-Year	1.299	
100-Year	0.750	100-Year	1.554	
200-Year	0.815	200-Year	1.657	

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

Excursion at Prede Maximum Excursic Maximum Excursic	Performance According to Dept. of Ecology veloped ½Q2 (Must be Less Than 0%): n from ½Q2 to Q2 (Must be Less Than 0%): n from Q2 to Q50 (Must be less than 10%): from Q2 to Q50 (Must be less than 50%):	2404.5% FAIL 11969.2% FAIL 99999.0% FAIL 100.0% FAIL
POND FAILS ONE	OR MORE DURATION DESIGN CRITERIA: F	AIL

MGS FLOOD PROJECT REPORT

Program Version: MGSFlood 4.09 Program License Number: 200210003 Run Date: 10/29/2012 2:31 PM

Input File Name:	CS-G Wetland ICP.fld
Project Name:	Constructed Wetland CS-G
Analysis Title: ICP De	esign
Comments:	Marine Drive I/C 30% Design. CS-07 Outfall, Columbia Slough Watershed.
	PRECIPITATION INPUT
Computational Time St	tep (Minutes): 60
Extended Precipitation Climatic Region Numb	
Full Period of Record A Precipitation Station :	Vailable used for Routing 97004005 Vancouver 40 in_5min 10/01/1939-10/01/2060
Evaporation Station Evaporation Scale Fac	: 971040 Vancouver 40 in MAP
HSPF Parameter Regi	
HSPF Parameter Regi	on Name : USGS Default
******** Default HSP	F Parameters Used (Not Modified by User) *************
**************************************	ATERSHED DEFINITION ************************************
COLUMN COLUMN	ARIO: PREDEVELOPED
Number of Subbasins:	
	2
	edeveloped Target Condition
	Area(Acres)
Till Forest	0.000
Till Pasture Till Grass	0.000 5.200
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	0.000
Subbasin Total	5.200

Subbasin	: Facility Location SA
-	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.410
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	0.000
Subbasin Total	0.410

-----SCENARIO: POSTDEVELOPED

Number of Subbasins: 2

Subbasin	: Post Target
	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.000
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	5.200

Subbasin Total

5.200

------ Subbasin : CS-G Wetland SA -------

	Area(Acres)
Till Forest	0.000
Till Pasture	0.000
Till Grass	0.000
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass	0.000
Wetland	0.000
Green Roof	0.000
User 2	0.000
Impervious	0.410
Subbasin Total	0.410

-----SCENARIO: PREDEVELOPED Number of Links: 1

Link Name: Facility Location Link Type: Copy Downstream Link: None

-----SCENARIO: POSTDEVELOPED Number of Links: 1

Link Name: CS-G Constructed Wetland Link Type: Copy Downstream Link: None

-----SCENARIO: PREDEVELOPED Number of Subbasins: 2 Number of Links: 1

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 2 Number of Links: 1

-----SCENARIO: PREDEVELOPED

Number of Links: 1

********** Link: Facility Location

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 888.07 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

-----SCENARIO: POSTDEVELOPED

Number of Links: 1

*********** Link: CS-G Constructed Wetland

Basic Wet Pond Volume (91% Exceedance): 25273. cu-ft Computed Large Wet Pond Volume, 1.5*Basic Volume: 37910. cu-ft

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 1904.38 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

Scenario Predeveloped Compliance Link: Facility Location Scenario Postdeveloped Compliance Link: CS-G Constructed Wetland

*** Point of Compliance Flow Frequency Data *** Recurrence Interval Computed Using Gringorten Plotting Position

Prede ^v Tr (Years)	velopment Runoff Discharge (cfs)	Postdevelopn Tr (Years) Disch	nent Runoff arge (cfs)	
2-Year	0.323	2-Year	1.472	
5-Year	0.568	5-Year	1.989	
10-Year	0.809	10-Year	2.388	
25-Year	1.131	25-Year	2.624	
50-Year	1.403	50-Year	3.075	
100-Year	1.426	100-Year	3.229	
200-Year	1.431	200-Year	3.360	
** Record too	Short to Compute Pea	k Discharge for These Re	ecurrence Intervals	1

**** Flow Duration Performance According to Dept. of Ecology Criteria ****

Excursion at Predeveloped ½Q2 (Must be Less Than 0%):	1164.4%	FAIL
Maximum Excursion from 1/2Q2 to Q2 (Must be Less Than 0%):	6457.8%	FAIL
Maximum Excursion from Q2 to Q50 (Must be less than 10%):	99999.0%	FAIL
Percent Excursion from Q2 to Q50 (Must be less than 50%):	100.0% FAIL	

POND FAILS ONE OR MORE DURATION DESIGN CRITERIA: FAIL

MGS FLOOD PROJECT REPORT

Program Version: MGSFlood 4.09 Program License Number: 200210003 Run Date: 10/29/2012 11:46 AM

Input File Name: Project Name: Analysis Title: ICP I Comments:	CS-H Swale_ICP.FLD CS-H Swale Design Marine Drive I/C 30% Design. CS-01 Outfall, Columbia Slough Watershed PRECIPITATION INPUT
Computational Time S	Step (Minutes): 15
Extended Precipitatio Climatic Region Num	n Timeseries Selected ber: 19
Full Period of Record Precipitation Station : Evaporation Station Evaporation Scale Fa	: 971040 Vancouver 40 in MAP
HSPF Parameter Reg HSPF Parameter Reg	
******** Default HS	PF Parameters Used (Not Modified by User) ************************************
**********************	VATERSHED DEFINITION ************************************
SCE	NARIO: PREDEVELOPED
Number of Subbasins	
Subbasin : F	Predeveloped Target Condition
	Area(Acres)
Till Forest	0.000
Till Pasture Till Grass	0.000 0.800
Outwash Forest	0.000
Outwash Pasture	0.000
Outwash Grass Wetland	0.000 0.000
Green Roof	0.000
User 2	0.000
Impervious	0.000
Subbasin Total	0.800

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 1

Subbasin : Post Target			
-	Area(Acres)		
Till Forest	0.000		
Till Pasture	0.000		
Till Grass	0.000		
Outwash Forest	0.000		
Outwash Pasture	0.000		
Outwash Grass	0.000		
Wetland	0.000		
Green Roof	0.000		
User 2	0.000		
Impervious	0.800		
Subbasin Total	0.800		

-----SCENARIO: PREDEVELOPED Number of Links: 1

Link Name: Facility Location Link Type: Copy Downstream Link: None

-----SCENARIO: POSTDEVELOPED Number of Links: 1

Link Name: CS-H Biofiltration Swale Link Type: Copy Downstream Link: None

-----SCENARIO: PREDEVELOPED Number of Subbasins: 1 Number of Links: 1

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Number of Links: 1

**********Water Quality Facility Data ************

-----SCENARIO: PREDEVELOPED

Number of Links: 1

********** Link: Facility Location

Infiltration/Filtration Statistics-----Total Runoff Volume (ac-ft): 127.22 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

-----SCENARIO: POSTDEVELOPED

Number of Links: 1

********** Link: CS-H Biofiltration Swale

15-Minute Timestep, Water Quality Treatment Design Discharge On-line Design Discharge Rate (91% Exceedance): 0.11 cfs Off-line Design Discharge Rate (91% Exceedance): 0.06 cfs ********

Infiltration/Filtration Statistics------Total Runoff Volume (ac-ft): 275.25 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Percent Treated (Infiltrated+Filtered)/Total Volume: 0.00%

Scenario Predeveloped Compliance Link: Facility Location Scenario Postdeveloped Compliance Link: CS-H Biofiltration Swale

*** Point of Compliance Flow Frequency Data *** Recurrence Interval Computed Using Gringorten Plotting Position

Predev Tr (Years)	velopment Runoff Discharge (cfs)	Postdevelopme Tr (Years) Discha	ent Runoff rge (cfs)	
2-Year	0.061	2-Year	0.293	
5-Year	0.130	5-Year	0.388	
10-Year	0.179	10-Year	0.465	
25-Year	0.257	25-Year	0.589	
50-Year	0.354	50-Year	0.693	
100-Year	0.400	100-Year	0.829	
200-Year	0.435	200-Year	0.884	

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

Maximum Excurs	ion from ½Q2 to Q2 (Must be Less ion from Q2 to Q50 (Must be less n from Q2 to Q50 (Must be less tha	than 10%): 9999	59.1% FAIL 19.0% FAIL 0% FAIL	
POND FAILS ON	E OR MORE DURATION DESIGN	I CRITERIA: FAIL		
		·		

APPENDIX B-2

BMPs Design

This page left blank intentionally.

ICP Design CS-B (Outfall XX)

DESIGN WORKSHEET FOR CONST			
	RUCTED WETLANDS	5	
PROJECT:	Columbia River Crossing		
BASIN:	Columbia Slough		
OUTFALL:			
LOCATION/JURISDICTION:	ODOT		
TREATMENT FACILITY:	Constructed Wetland		
FACILITY NAME:	CS-B		
ORIGINAL DESIGN DATE:	7/1/2012	apprx	
UPDATED:	10/29/2012		
DESIGNED BY: CHECKED BY:	C. Sourek L. Line		
CHECKED BT.	L. LIIIE		
Parameter		Units	Comments
Preliminary Data Collection			
Contributing Impervious Area, CIA	4.70	acres	
	204732	sq-ft	Delineated with CAD software, 10/2012
Water Quality Volume, WQV	22840	cu-ft	Calculated in MGSFlood with a 1-hour timestep (basic wet pond volume, 91% exceedance), includes facility surface area
Total Water Volume, VT	25465	cu-ft	VT = V1 + V2 + V3; should meet or exceed WQV
Uppermost Layer of Facility Dimensions			
Top of Facility			
Total Top Width, W	90	ft	Primary input
Total Top Length, L	200	1[07 #	Primary input
Total Top Surface Area, B Top Elevation	18000	sq-ií ft	= Total Top Length * Total Top Width From contours/proposed surfaces
At Water Surface	24.0	a	
Upland/Dry Side Slope, Z1	3	:1	maximum 3:1 [LIDA Handbook: pg. 51]
Freeboard Depth	1.0	ft	80% of WQV [Low Impact Development Approaches (LIDA) Handbook: pg. 51]
Total Water Surface Width, W1	84		= Total Top Width - (2 * Upland Side Slope * Freeboard Depth)
Total Water Surface Length, L1	194	ft	= Total Top Length - (2 * Upland Side Slope * Freeboard Depth)
Total Water Surface Area, B1	16296		=W1*L1
Total Water Surface Area		acres	
Water Surface Elevation	23.5	ft	= Top Elevation - Freeboard Depth
At Berm		_	
Wet Side Slope, Z3	5	:1	maximum 5:1 (LIDA Handbook; pg. 51)
Berm Width Water Depth Above Berm, h1	12	nt A	per requirements????
Water Depth Above Berm, h1 Width (approx), W2	74	ft	per requirements???? = W1 - (2 * Z3 * h1)
Length (approx), V2	184		= wi - (2 * 23 * hi) = L1 - (2 * 23 * hi)
Surface Area, B2	13616		=L1*W1
Berm Elevation	23		= Top Elevation - Freeboard Depth
Dverall	·	<u> </u>	
Volume of Water Above the Berm, V1	14936	cu-ft	frustum volume = (h/3) * (B1 + B2 + vB2*B1) (ODOT Hydraulics Manual; Equation 12-16)
Amended Soils Depth	1	ft	12 inch minimum [LIDA Handbook; pg. 53]
Forebay Design			
Ideal Forebay Volume		cu-ft	20% of WQV [Low Impact Development Approaches (LIDA) Handbook; pg. 51]
Actual Forebay Volume, VF		cu-ft	= V2 + % of V1 as determine by (L2f + 1/2 of berm width) / L2; Should meet or exceed Ideal Forebay Volume
Calculated Volume, V2	3128	cu-ft	frustum volume = (h2/3) * (B2f + B3f + vB2fB3f); does not include volume above the berm (ODOT Hydraulics Manual; Equation 12-16)
At Water Surface Forebay Water Surface Width, W1f	1		
			= W1
	84	ft ft	=Whatever makes 1 3f min of A ft OR /= 0.1 * 1.1 \: Use goal seek to determine by eatting 1 of to A: Adjust to obtain desired relative volumes
Forebay Water Surface Length, L1f	40	ft	=Whatever makes L3f min of 4 ft OR {= 0.1 * L1}; Use goal seek to determine by setting L3f to 4; Adjust to obtain desired relative volumes 10% of Total Surface Area [LIDA Handbook; pg. 51]
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f	40	ft sq-ft	=Whatever makes L3f min of 4ft OR [=0.1*L1]; Use goal seek to determine by setting L3f to 4; Adjust to obtain desired relative volumes 10% of Total Surface Area [LIDA Handbook: pg. 51]
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm	40 1630	ft sq-ft	=Whatever makes L3f min of 4ft OR [=0.1 L1]; Use goal seek to determine by setting L3f to 4; Adjust to obtain desired relative volumes 10% of Total Surface Area [LIDA Handbook pg. 51] = W2
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm	40	ft sq-ft ft	10% of Total Surface Area (LIDA Handbook: pg. 51) = W2 = L2 - (21 * h1) - (0.5 * Berm Width)
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f	40 1630 74	ft sq-ft ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom	40 1630 74 29	ft sq-ft ft ft	10% of Total Surface Area (LIDA Handbook: pg. 51) = W2 = L2 - (21 * h1) - (0.5 * Berm Width)
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f Al Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2	40 1630 74 29 2146	ft sq-ft ft ft sq-ft ft	10% of Total Surface Area (<i>LIDA Handbook: pg. 51</i>) = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2(* L2(
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay Side Stope, Z2	40 1630 74 29 2144 3 4 4	ft sq-ft ft ft sq-ft ft :1	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2 + (Z1 * h1) - (0.5 * Berm Width) = W2 + (Z1 * h1) - (0.5 * Berm Width)
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay, K2f Supe, Z2 Berm Side Stope, Zbf	40 1630 74 29 2146 3 4 4	ft sq-ft ft ft sq-ft ft :1 :1	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2! * L2! H:V H:V
Forebay Water Surface Length, Ltf Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay Side Stope, Z2 Berm Side Stope, Zbf Elevation	40 1630 74 299 2146 3 3 4 4 4 20	ft sq-ft ft sq-ft ft :1 :1 ft	10% of Total Surface Area (<i>LIDA Handbook: pg. 51</i>) = W2 = L2 - (21 * h1) - (0.5 * Berm Width) = W2(* L2(H:V H:V = Berm Elevation - h2 = Berm Elevation - h2
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay Side Slope, Z2 Berm Side Slope, Z5 Elevation Width (approx), W3f	40 1630 74 29 2146 3 4 4 4 20 55	ft sq-ft ft sq-ft ft :1 :1 ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W21* L2f H:V H:V H:V = Berm Elevation - h2 = W2 - (2 * Z3 * h2) = W2 - (2 * Z3 * h2)
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f Al Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay Side Stope, Z2 Berm Side Stope, Zbf Elevation Width (approx), W3f Length (approx), U3f	40 1630 74 29 2148 3 4 4 20 55 5 5 5	ft sq-ft ft sq-ft ft :1 :1 ft ft	10% of Total Surface Area (<i>LIDA Handbook: pg. 51</i>) = W2 = L2 - (21 * h1) - (0.5 * Berm Width) = W2(* L2(H:V H:V = Berm Elevation - h2 = Berm Elevation - h2
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f Nt Berm Width (approx), V2f Jurface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay Side Stope, Z2 Everation State Stope, Z4 Everation Area at Berm, B2f Variable Stope, Z4 Everation Area, B3f Stoftm Area, B3f	40 1630 74 29 2148 3 4 4 20 55 5 5 5	ft sq-ft ft ft sq-ft :1 :1 ft ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2(* L2f H:V H:V H:V = Berm Elevation - h2, = W2 - (Z* Z3 * h2) = L2f - (Z3 * h2) - (Z2f * h2); Min 4 ft; Use Goal Seek to determine by changing L1f
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), K2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay Side Slope, Z2 Berm Side Slope, Z2 Berm Side Slope, Z5f Elevation Width (approx), W3f Length (approx), U3f Bottom Area, B3f Permenant Pool Design	40 1630 74 29 2146 3 4 4 2146 5 5 5 250	ft sq-ft ft ft sq-ft :1 :1 ft ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2(* L2f H:V H:V H:V = Berm Elevation - h2, = W2 - (Z* Z3 * h2) = L2f - (Z3 * h2) - (Z2f * h2); Min 4 ft; Use Goal Seek to determine by changing L1f
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f At Berm Width (approx), V2f Length (approx), V2f Surface Area at Berm, B2f Pond Bottom Depth Bolow Berm, N2 Forebay Side Slope, Z2 Everstion Slope, Z4 Elevation Width (approx), V3f Calculated Volume, V3 At Water Surface	40 1630 24 246 3 4 4 4 20 55 55 55 2555 2555	ft sq-ft ft ft :1 :1 ft ft ft ft ft ft ft ft ft ft ft ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2 + (Z1 * h1) - (0.5 * Berm Width) = W2 + (Z1 * h2) - (0.5 * Berm Width) = W2 + (Z2 * h2) = Berm Elevation - h2. = W2 - (Z2 * h2) - (Z21 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 + U3 + Vb + Vc + 2V/d (see notes)
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm With (approx), W2f ength (approx), U2f Surface Area at Berm, B2f Pond Bottom Pond Bottom Pon	40 1630 74 29 2146 3 4 4 4 20 50 55 250 7400 7400	ft sq-ft ft ft :1 :1 ft ft ft ft ft ft ft ft ft ft ft ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2 / L2f H:V H:V H:V = Berm Elevation - h2 = W2 - (2 * 23 * h2) - (Z21* h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 * L3f V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f Al Berm Width (approx), W2f Length (approx), U2f Surface Area at Berm, 82f Pond Bottom Depth Below Berm, 12 Forebay Side Stope, 72 Berm Side Stope, 72f Elevation Width (approx), W3f Length (approx), L3f Bottom Area, B3f Permentant Pool Design Calculated Volume, V3 Alt Water Surface Pool Water Surface Length, L1p	40 1630 24 246 3 4 4 4 20 55 55 55 2555 2555	ft sq-ft ft ft :1 :1 ft ft ft ft ft ft ft ft ft ft ft ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2 + (Z1 * h1) - (0.5 * Berm Width) = W2 + (Z1 * h2) - (0.5 * Berm Width) = W2 + (Z2 * h2) = Berm Elevation - h2. = W2 - (Z2 * h2) - (Z21 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 + U3 + Vb + Vc + 2V/d (see notes)
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), V2f Length (approx), V2f Surface Area at Berm, B2f Pond Bottom Depth Bolow Berm, N2 Forebay Side Slope, Z2 Everstion Slope, Zbf Elevation Width (approx), V3f Calculated Volume, V3 At Water Surface Width, W1p Pool Water Surface Length, L1p At Berm	40 1630 74 224 2146 3 4 4 4 20 50 50 50 50 50 50 50 50 50 50 50 50 50	ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2 * (L24 H:V H:V H:V = W2 - (Z2 * h2) = W2 - (Z2 * h2) = W3 + U5 + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1)
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), U2f Surface Area at Berm, B2f Prond Bottom Depth Below Berm, h2 Forebay Side Slope, Z2 Berm Side Slope, Z2 Berm Side Slope, Z2 Berm Side Slope, Z2 Berm Side Slope, Z4 Elevation Width (approx), W3f Calculated Volume, V3 At Water Surface Deol Water, Surface Length, L1p At Berm	40 1630 74 29 2146 3 4 4 20 550 550 7400 84 153 154 154	ft sq-ft ft ft sq-ft ft ft ft ft ft ft ft ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2 / L2f H:V H:V H:V = Berm Elevation - h2 = W2 - (2 * Z3 * h2) = L2f - (23 * h2) - (Z2f * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3f * L3f V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1) = W2
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), V2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, n2 Forebay Side Stope, Z2 Berm Side Stope, Z4 Elevation Width (approx), W3f Length (approx), L3f Bottom Area, B3f Permenater Surface Pool Water Surface Vidth, W1p Pool Water Surface Length, L1p At Berm Nidth (approx), W2p Length (approx), L2p	40 1630 74 292 2146 3 4 4 4 20 55 250 7400 84 155 250 7400 7400 7400 7400 7400 7400 740 74	ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	10% of Total Surface Area [LIDA Handbook pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2 - (Z1 * h1) - (0.5 * Berm Width) H;V H;V H;V = Berm Elevation - h2. = W2 - (Z * Z3 * h2) = L27 - (Z3 * h2) - (Z21 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 * L37 V3 = 2Va + Vb + Vc + 2V(d (see notes)) = W1 = L1 - L1ft Ox (= 0.9 * L1) = W2 = L10 - (Z1 * h1) - (0.5 * Berm Width) = V10
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), U2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay Stole Stope, Z2 Depth Below Berm, h2 Forebay Stole Stope, Z2 Dem Stole Stope, Z0 Elevation Width (approx), W3f Length (approx), U3f Catculated Volume, V3 At Water Surface Ool Water Surface Deol Water, Surface Pool Water Surface Length, L1p At Berm Width (approx), L2p Surface Area at Berm, B2p,	40 1630 74 29 2146 3 4 4 20 550 550 7400 84 153 154 154	ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2 / L2f H:V H:V H:V = Berm Elevation - h2 = W2 - (2 * Z3 * h2) = L2f - (23 * h2) - (Z2f * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3f * L3f V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1) = W2
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, 82r Pond Bottom Depth Below Berm, h2 Forebay Side Stope, Z2 Berm Side Stope, Z0f Elevation Vidth (approx), W3f ength (approx), U3f Battom Langt Area, B3f Permenant Pool Design Calculated Volume, V3 At Water Surface Length, L1p At Width (approx), W2p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), W2p Length (approx), W2p Out Water Surface Length, L1p At Berm Width (approx), W2p Out Water Surface Length, L1p At Berm Ond Bottom	40 1630 1430 1430 1430 144 144 144 144 154 164 164 164 164 164 164 164 16	ft sq-ft ft ft ft sq-ft i1 i1 ft ft ft ft ft ft ft ft ft ft ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2 * L2r H:V V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1) = W2 # L1p - (Z1 * h1) - (0.5 * Berm Width) = W2p * L2p
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), U2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, n2 Forebay Side Stope, Z2 Berm Side Stope, Z4 Elevation Width (approx), W3f Length (approx), U3f Cathon Area, B3f Permenater Vool Design Catholater Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), W2p Length (approx), U2p Surface Area at Berm, B2p. Pond Bottom Max Depth Below Berm, h3	40 1630 74 292 2146 3 4 4 4 20 55 250 7400 84 155 250 7400 7400 7400 7400 7400 7400 740 74	ft sq-ft ft ft ft sq-ft i1 i1 ft ft ft ft ft ft ft ft ft ft ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Bern Width) = W2* (L2f H:V H:V H:V = W2* (L2f * h2) - (Z2f * h2) = W3* (L3f W3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1) = W2 = W2 = W2 = W1 = L1 - L1f OR (= 0.9 * L1) = W2 = W2 = W2 = U1 - L1 f OR (= 0.9 * L1) = warrow 2.5 ft (LIDA Handbook: pg. 52]
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm With (approx), W2f ength (approx), L2f Surface Area at Berm, B2r Pond Bottom Pepth Below Berm, 12 Forebay Side Stope, Z2 Berm Side Stope, Z2 Berm Side Stope, Z4 Bern Side Stope, Z4 Bern Side Stope, Z4 Bern Bern Bern, B2 Pond Bettom Vidit (approx), V2p L1p At Bern Widtare Area Bern, B2p, Pond Bottom Vater Area Bern, B2p, Pond Bottom Vater Betow Berm, h3 Ool Side Stope, Z3	40 1630 1430 1430 1430 144 144 144 144 154 164 164 164 164 164 164 164 16	ft sq-ft ft ft ft sq-ft i1 i1 ft ft ft ft ft ft ft ft ft ft ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Berm Width) = W2 * L2* H:V V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1fOR (= 0.9 * L1) = W2 #L1P - (21* h1) - (0.5* Bern Width) = W2p* L25 ft [LIDA Handbook: pg. 52] maximum 5:1 [LIDA Handbook: pg. 51]
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), U2f Surface Area at Berm, 82f Pord Bottom Depth Below Berm, n2 Forebay Side Stope, Z2 Berm Side Stope, Z1bf Elevation Width (approx), W3f Length (approx), U3f Bottom Area, B3f Permenant Pool Design Calculated Volume, V3 At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3 Pool Suface Z3 Berm Side Slope, Z3 Berm Side Slo	40 1630 1430 1430 1430 144 144 144 144 154 164 164 164 164 164 164 164 16	ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Bern Width) = W2* (L2f H:V H:V H:V = W2* (L2f * h2) - (Z2f * h2) = W3* (L3f W3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1) = W2 = W2 = W2 = W1 = L1 - L1f OR (= 0.9 * L1) = W2 = W2 = W2 = U1 - L1 f OR (= 0.9 * L1) = warrow 2.5 ft (LIDA Handbook: pg. 52]
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), U2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay Stde Stope, Z2 Berm Side Stope, Z2 Berm Side Stope, Z4 Elevation Width (approx), W3f Length (approx), U3f Softom Area, B3f Permenant Pool Design Catculated Volume, V3 At Water Surface Col Water Surface Length, L1p At Berm Width (approx), L2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3 Pool Side Stope, Z3, Berm Side Stope, Z3, Berm Side Stope, Z4, Berm	40 1630 1630 1430 144 144 144 144 144 1542 1552 1	ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	10% of Total Surface Area [LIDA Handbook: pg. 5]] = W2 = L2 - (21*h1) - (0.5*Bern Width) = W2 = Bern Elevation - h2. = Bern Elevation - h2. = V2 - (23*h2) - (221*h2); Ain 4 ft; Use Goal Seek to determine by changing L1f = W3* L37 = W3* L37 V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9*L1) = W2 = W2 = V2 = V4 = W2 = L1 - L1f OR (= 0.9*L1) = W4 = W4 = W1 = L1 - L1f OR (= 0.9*L1) = W2
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, 82f Pond Bottom Depth Below Berm, n2 Forebay Side Stope, Z2 Berm Side Stope, Z1 Elevation Width (approx), W3f Length (approx), L3f Bottom Area, B3f Permenant Pool Design Calculated Volume, V3 At Water Surface Pool Water Surface Length, L1p At Berm Width (approx), L2p Surface Area at Berm, 82p, Pool Bottom Max Depth Below Berm, h3 Pool Side Stope, Z3 Berm Side Stope, Z4 Elevation Width (approx), W2p Length (approx), W3p Length (approx), U3p Length (appro	40 1630 1630 14 29 2146 3 4 4 4 4 20 5 5 250 250 250 250 250 250	ft sq.ft ft ft ft ft ft ft ft ft ft ft ft ft f	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (21 * h1) - (0.5 * Bern Width) = W2 + (21 * h1) - (0.5 * Bern Width) = W2 + (22 * h2) = Bern Elevation - h2 = W2 - (22 * h2) - (22 * h2) = U2 - (23 * h2) - (22 * h2) = U3 + (23 * h2) - (22 * h2) = W3 + U3 + Vb + Vc + 2V/d (see notes) = W1 = L1 - L1 + L1 + OR (= 0.9 * L1) = W2 = W2 = W2 = W2 = W1 = L1 - L1 + L1 + OR (= 0.9 * L1) = W2 = W2 = W2 = W2 = W2 = W1 = L1 - L1 + L1 + OR (= 0.9 * L1) = W2 = W2 = W2 = W2 = W2 = U2 = Bern Elevation - h3 = W2 = U2 = U3 = W2 = U2
Forebay Water Surface Length, L1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, 82f Pond Bottom Depth Below Berm, n2 Forebay Side Stope, Z2 Berm Side Stope, Z1 Elevation Width (approx), W3f Length (approx), L3f Bottom Area, B3f Permenant Pool Design Calculated Volume, V3 At Water Surface Pool Water Surface Length, L1p At Berm Width (approx), L2p Surface Area at Berm, 82p, Pool Bottom Max Depth Below Berm, h3 Pool Side Stope, Z3 Berm Side Stope, Z4 Elevation Width (approx), W2p Length (approx), W3p Length (approx), U3p Length (appro	40 1630 1630 1430 1430 144 144 144 144 164 164 164 164	ft sq.ft ft ft ft ft ft ft ft ft ft ft ft ft f	10% of Total Surface Area [LIDA Handbook: pg. 5]] = W2 = L2 - (21*h1) - (0.5*Bern Width) = W2 = Bern Elevation - h2. = Bern Elevation - h2. = V2 - (23*h2) - (221*h2); Ain 4 ft; Use Goal Seek to determine by changing L1f = W3* L37 = W3* L37 V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9*L1) = W2 = W2 = V2 = V4 = W2 = L1 - L1f OR (= 0.9*L1) = W4 = W4 = W1 = L1 - L1f OR (= 0.9*L1) = W2
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f At Berm With (approx), V2f Length (approx), V2f Denth Below Berm, B2f Port Balow Berm, B2f Forebay Side Stope, Z2 Berm Side Stope, Z2 Berm Side Stope, Z2 Berm Side Stope, Zbf Elevation With (approx), V3f Length (approx), V3f Deatom Area, B3f Pariculated Volume, V3 At Water Surface Design Calculated Volume, V3 At Water Surface Length, L1p At Berm With (approx), V2p Length (approx), V2p Length (approx), V2p Deal Side Stope, Zbp Deal Side Stope,	40 1630 17552 17555 17555 17552 17552 17552 17552 17555 17555 17555 175555	ft sq.ft ft ft ft ft ft ft ft ft ft ft ft ft f	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (21*h1) - (0.5*Bern Width) = W4*L2f H:V H:V H:V H:V = Bern Elevation - h2. = V2 - (21*h1) - (2.5*Bern Width) = V2 - (23*h2) - (221*h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 + L3f V3 = 2Va + Vb + Vc + 2Vd (see notes) = V1 = L1 - L1f OR (= 0.9*L1) = W2 = L1 - L1f OR (= 0.9*L1) = W2 = W2 + (23*h2) = W2 + (23*h2) = W4 = W2 = W1 = L1 - L1f OR (= 0.9*L1) = W2 = W2 + (23*h2) = W2 + (23*h3) = W3 + L3p = berm top to the pool bottom). The volume was modeled and calculated by slicing the pool into 6 simpler shapes. The volumes for
Forebay Water Surface Length, Ltf Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Bern, h2 Forebay Side Slope, Z2 Berm Side Slope, Zbf Elevation Width (approx), W3f Length (approx), L3f Bottom Area, B3f Permenant Pool Design Calculated Volume, V3 At Water Surface Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), W2p Length (approx), W2p Deol Side Slope, Z3 Berm Side Slope, Z3 Bern Side Slope, Z3 Bern Side Slope, Z3 Bern Side Slope, Z3 Bern Side Slope, Z4 Bern May Depth Below Bern, h3 Pool Side Slope, Z3 Bern Side Slope, Z3 Bern Side Slope, Z4 Bern Side Slope, Z4 Bern Side Slope, Z5 Delevation Width (approx), L3p Elevation Width (approx), L3p Bottom Area, B3 Volumes - Permenant Pool volumes were calcula	40 1630 17552 17555 17555 17552 17552 17552 17552 17555 17555 17555 175555	ft sq.ft ft ft ft ft ft ft ft ft ft ft ft ft f	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (Z1 * h1) - (0.5 * Bern Width) = W2 + (Z1 * h1) - (0.5 * Bern Width) = W2 + (Z2 * h2) = W2 + (Z2 * h2) - (Z2 * h2) = W2 + (Z2 * h2) - (Z2 * h2) = L2 - (Z3 * h2) - (Z2 * h2) = L2 - (Z3 * h2) - (Z2 * h2) = L2 - (Z3 * h2) - (Z2 * h2) = L2 - (Z3 * h2) - (Z2 * h2) = W3 + U5 + Vc + 2Vd (see notes) = W1 = L1 - L1 fOR (= 0.9 * L1) = W2 = W2 = W2 = W2 = W1 = L1 - L1 fOR (= 0.9 * L1) = W2 = W2 = W2 = W2 + (Z2 + h1) - (0.5 * Bern Width) = W2 + (Z2 + h1) - (0.5 * Bern Width) = W2 + (Z2 + h1) - (0.5 * Bern Width) = W2 + (Z2 + h1) - (0.5 * Bern Width) = W2 + (Z2 + h1) - (0.5 * Bern Width) = W2 + (Z2 + h1) - (0.5 * Bern Width) = W2 + (Z2 + h1) - (0.5 * Bern Width) = W2 + (Z2 + h1) - (0.5 * Bern Width) = W2 + (Z2 + h1) - (0.5 * Bern Width) = W2 + (Z2 + h1) - (D.4 Handbook: pg. 51/ H.V = Bern Elevation
Forebay Water Surface Length. L1f Forebay Water Surface Area, B1f At Berm With (approx), V2f Length (approx), V2f Denth Below Berm, B2f Port Balow Berm, B2f Forebay Side Stope, Z2 Berm Side Stope, Z2 Berm Side Stope, Z2 Berm Side Stope, Zbf Elevation With (approx), V3f Length (approx), V3f Deatom Area, B3f Pariculated Volume, V3 At Water Surface Design Calculated Volume, V3 At Water Surface Length, L1p At Berm With (approx), V2p Length (approx), V2p Length (approx), V2p Deal Side Stope, Zbp Deal Side Stope,	40 1630 1630 14 292 2146 3 4 4 4 4 4 20 20 250 250 250 250 250 250	ft sq.ft ft ft ft ft ft ft ft ft ft ft ft ft f	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (21*h1) - (0.5*Bern Width) = W4*L2f H:V H:V H:V H:V = Bern Elevation - h2. = V2 - (21*h1) - (2.5*Bern Width) = V2 - (23*h2) - (221*h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 + L3f V3 = 2Va + Vb + Vc + 2Vd (see notes) = V1 = L1 - L1f OR (= 0.9*L1) = W2 = L1 - L1f OR (= 0.9*L1) = W2 = W2 + (23*h2) = W2 + (23*h2) = W4 = W2 = W1 = L1 - L1f OR (= 0.9*L1) = W2 = W2 + (23*h2) = W2 + (23*h3) = W3 + L3p = berm top to the pool bottom). The volume was modeled and calculated by slicing the pool into 6 simpler shapes. The volumes for
Forebay Water Surface Length, Ltf Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Bern, h2 Forebay Side Slope, Z2 Berm Side Slope, Zbf Elevation Width (approx), W3f Length (approx), L3f Bottom Area, B3f Permenant Pool Design Calculated Volume, V3 At Water Surface Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), W2p Length (approx), W2p Deol Side Slope, Z3 Berm Side Slope, Z3 Bern Side Slope, Z3 Bern Side Slope, Z3 Bern Side Slope, Z3 Bern Side Slope, Z4 Bern May Depth Below Bern, h3 Pool Side Slope, Z3 Bern Side Slope, Z3 Bern Side Slope, Z4 Bern Side Slope, Z4 Bern Side Slope, Z5 Delevation Width (approx), L3p Elevation Width (approx), L3p Bottom Area, B3 Volumes - Permenant Pool volumes were calcula	40 1630 1630 1430 1430 144 142 144 143 144 143 155 144 143 155 145 145 155 145 155 145 155 145 155 145 155 145 155 15	ft ft ft <	ItP% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (21*h1) - (0.5*Bern Width) = W2 = Bern Elevation - h2. = Bern Elevation - h2. = W2 - (22*3*h2) = L2 - (23*h2) - (224*h2) = L2 - (23*h2) - (24*h2) - (24*h2). Win 4 ft; Use Goal Seek to determine by changing L1f = W3*L3f V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9*L1) = L1 - L1 OR (= 0.9*L1) = W2 = W2 = W2 = W1 = L1 - L1 OR (= 0.9*L1) = W2 = W1 = L1 - L1 OR (= 0.9*L1) = W2 = W2 = W2 = W2 = W2 = V2 = V2 = U2 = V2 = W2 = U2 = W2 = U2 = U2 = V2 <
Forebay Water Surface Area, B1f Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Bern, h2 Forebay Side Slope, Z2 Berm Side Slope, Z2 Berm Side Slope, Z4 Elevation Width (approx), L3f Bottom Area, B3f Pool Water Surface Horebay Side Slope, Z4 Elevation Width (approx), L3f Bottom Area, B3f Width (approx), L3f Dool Water Surface Width, W1p Pool Side Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Z3 Bern Side Slope, Z4 Bern Side Slope, Z5 Berns Side Slope, Z5 Berns Side Slope, Z4 Berns Side Slope, Z5 Berns Side Slope, Z5	40 1630 1630 1430 1430 144 142 144 143 144 143 155 144 143 155 145 145 155 145 155 145 155 145 155 145 155 145 155 15	ft ft ft <	ItP% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (21*h1) - (0.5*Bern Width) = W2 = Bern Elevation - h2. = Bern Elevation - h2. = W2 - (22*3*h2) = L2 - (23*h2) - (224*h2) = L2 - (23*h2) - (24*h2) - (24*h2). Win 4 ft; Use Goal Seek to determine by changing L1f = W3*L3f V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9*L1) = L1 - L1 OR (= 0.9*L1) = W2 = W2 = W2 = W1 = L1 - L1 OR (= 0.9*L1) = W2 = W1 = L1 - L1 OR (= 0.9*L1) = W2 = W2 = W2 = W2 = W2 = V2 = V2 = U2 = V2 = W2 = U2 = W2 = U2 = U2 = V2 <
Forebay Water Surface Length, Ltf Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Bern, h2 Forebay Side Slope, Z2 Berm Side Slope, Z2 Berm Side Slope, Zdf Elevation Width (approx), U3f Calculated Volume, V3 At Water Surface Pool Water Surface Width, W1p Pool Water Surface Midth, L1p At Berm Width (approx), U2p Surface Area at Bern, B2p Pond Bottom Max Depth Below Bern, h3 Pool Side Slope, Z3 Berm Side Slope, Z3 Dottom Area, B3 Volumes - Permenant Pool volumes were calculated and combined to d Va	40 1630 1430 144 1920 146 144 144 144 144 1550 1550 10582 1	ft ft ft <	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (21 * h1) - (0.5 * Bern Width) = W2 + (21 * h1) - (0.5 * Bern Width) = W2 + (27 ± 31) = W2 + (27 ± 31) = W2 + (27 ± 31) = W2 + (27 ± 312) = W1 + (27 ± 137) = W1 + (11) - (0.5 * Bern Width) = W2 + Vb + Vc + 2Vd (see notes) = W2 + Vb + Vc + 2Vd (see notes) = W1 + (11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) = W2 + (27 ± 11) - (0.5 * Bern Width) <td< td=""></td<>
Forebay Water Surface Length, Ltf Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay Side Slope, Z2 Berm Side Slope, Z2 Berm Side Slope, Zbf Elevation Width (approx), U3f Bottom Area, B3f Permenant Pool Design Calculated Volume, V3 At Water Surface Length, Ltp At Berm Width (approx), U2p Length (approx), W2p Length Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Zbp Elevation Width (approx), W3p Length (40 1630 1430 144 1920 146 144 144 144 144 1550 1550 10582 1	ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (21*h1) - (0.5*Bern Width) = W2 = W2 = Bern Elevation - h2 = W2 - (2*Z3*h2) = L2 - (23*h2) - (22*h2) = W3*L3 W3 W3 = W3*L3 W3 W3 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W2 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W2 = W2 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W2 = W2 = Bern Elevation - h3 = W2 - (2*Z3*h3) = L2p - (2*h3) - (2p*h3) = L2p - (2*h3) - (2p*h3) = L2p - (2*h3) - (2p*h3) = Elza - L3*h3*(L2p - 23*h3) = W2 - (2*23*h3) = Pramide V= (1(2)*h3*(L2p - 23*h3) = W2 + (2*h3*(L3p - 23*h3)*(W2p - 23*h3) = Prime, V = (1(2)*h3*(L2p - 23*h3)
Forebay Water Surface Length, Ltf Forebay Water Surface Area, B1f At Berm Width (approx), W2f Length (approx), L2f Surface Area at Berm, B2f Pond Bottom Depth Below Berm, h2 Forebay Side Slope, Z2 Berm Side Slope, Z2 Berm Side Slope, Zbf Elevation Width (approx), U3f Bottom Area, B3f Permenant Pool Design Calculated Volume, V3 At Water Surface Length, Ltp At Berm Width (approx), U2p Length (approx), W2p Length Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Zbp Elevation Width (approx), W3p Length (40 1630 1430 144 1920 146 144 144 144 144 1550 1550 10582 1	ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (21*h1) - (0.5*Bern Width) = W2 = W2 = Bern Elevation - h2 = W2 - (2*Z3*h2) = L2 - (23*h2) - (22*h2) = W3*L3 W3 W3 = W3*L3 W3 W3 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W2 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W2 = W2 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W2 = W2 = Bern Elevation - h3 = W2 - (2*Z3*h3) = L2p - (2*h3) - (2p*h3) = L2p - (2*h3) - (2p*h3) = L2p - (2*h3) - (2p*h3) = Elza - L3*h3*(L2p - 23*h3) = W2 - (2*23*h3) = Pramide V= (1(2)*h3*(L2p - 23*h3) = W2 + (2*h3*(L3p - 23*h3)*(W2p - 23*h3) = Prime, V = (1(2)*h3*(L2p - 23*h3)
Forebay Water Surface Length, Ltf Forebay Water Surface Area, B1f At Berm With (approx), W2f Length (approx), L27 Surface Area at Berm, B2f Pond Bottom Depth Below Bern, h2 Forebay Side Slope, Z2 Berm Side Slope, Zbf Elevation With (approx), W3f Length (approx), L3f Bottom Area, B3f Permenant Pool Design Calculated Yolume, V3 At Water Surface Length, L1p At Berm Max Depth Below Bern, h3 Pool Side Slope, Zbp Elevation Max Depth Below Bern, h3 Pool Side Slope, Z3 Berm Side Slope, Zbp Elevation Max Depth Below Bern, h3 Pool Side Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Zbp Elevation Max Depth Below Bern, h3 Pool Side Slope, Z3 Berm Side Slope, Zbp Elevation Max Depth Below Bern, h3 Pool Side Slope, Zbp Elevation Widh (approx), L3p Bottom Area, B3 Vb Vc	40 1630 1430 144 1920 146 144 144 144 144 1550 1550 10582 1	ft ft	10% of Total Surface Area [LIDA Handbook: pg. 51] = W2 = L2 - (21*h1) - (0.5*Bern Width) = W2 = W2 = Bern Elevation - h2 = W2 - (2*Z3*h2) = L2 - (23*h2) - (22*h2) = W3*L3 W3 W3 = W3*L3 W3 W3 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W2 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W2 = W2 = W1 = L1 - L1*OR (= 0.9*L1) = W2 = W2 = W2 = Bern Elevation - h3 = W2 - (2*Z3*h3) = L2p - (2*h3) - (2p*h3) = L2p - (2*h3) - (2p*h3) = L2p - (2*h3) - (2p*h3) = Elza - L3*h3*(L2p - 23*h3) = W2 - (2*23*h3) = Pramide V= (1(2)*h3*(L2p - 23*h3) = W2 + (2*h3*(L3p - 23*h3)*(W2p - 23*h3) = Prime, V = (1(2)*h3*(L2p - 23*h3)

Notes:

Denotes input required Goal Seek to Determine Values Match equations to Forebay WS Length, L1f, if necessary

DESIGN WORKSHEET FOR E	BIOFILTRATION SWALES

DESIGN WORKSHEET FOR BIOFIL	TRATION SWALES		
PROJECT:	Columbia River Crossing	29-Oct	Prepared by: C. Sourek
BASIN:	Columbia Slough	20 000	Checked by: L.Line
OUTFALL:			
LOCATION/JURISDICTION:	ODOT		
TREATMENT FACILITY:	Biofiltration Swale(s)		
FACILITY NAME:	CS-C		
Parameter		Units	Comments
Preliminary Steps (P) from WSDOT HRM Novem	ber 2011, pg 5-41		
Impervious Area A	87,120	sq ft	
	2.00	acre	Delineated in Cad dgn file
Water Quality Design Storm Depth, P	2.09	in	2yr-24hr (45.6387° N, 122.6615° W) [NOAA Atlas 2, Precipitation Frequency Data Output]
Runoff Treatment Design Flow Rate, Qwg	0.16	cfs	Cont. Model in MGSFlood; P-1; includes swale surface area
P _(72%-2yr)	1.50	in	72% of the 2yr-24hr precipitation depth (6month-24hr precip can be used instead) [HRM pg. 5-44]
(1270-291)	3.71		= 2.5*P _(72%-2vf) = 0.052 (for off-line bioswales in western WA) [HRM pg 5-44]
n Disfluention Design Flow Data O		,	
Biofiltration Design Flow Rate, Q _{biofil}	0.60		= k*Q _{wq} ; P-2
Longitudinal Slope, s	1.5	%	Recommended 1.5-5.0%; P-3 [HRM Table RT.04.2]
	0.015	tt/ft	A survive surface much arise for how and 05 D 4 RUDM Table DT 04 41
Manning "n"	0.35		Assuming surface roughening features, n=0.35; P-4 [HRM Table RT.04.1]
	2011 mm F 44 thm: F 40		
Design Steps (D) from WSDOT HRM November 2 Design Depth, y	2011, pg 5-44 thru 5-48	0	
Design Depth, y	4	in	Assuming infrequent mowing; D-1 [HRM Table RT.04.2]
Taraturant Ana a sida alam	0.33		WODOT with a second OFN/w00 Terrenidal share 1 D 0
Treatment Area side slope, z		:1	per WSDOT maintenance request 25Nov08, Trapezoidal channel; D-2
Cross-Sectional Area, A	2.68	sq π	= (b + zy)*y; D-4 [HRM Table RT.04.5]
Wetted Perimeter, P	9.45	ft	$= b + 2y^{*}(1+z^{2})^{0.5}$ [HRM Table RT.04.5]
Hydraulic Radius, R	0.28		= A / P [HRM Table RT.04.5]
= (Q _{biofil} *n) / (1.49s ^{0.5})	1.15		Goal Seek to = AR ^{0.67} by changing Q _{wq} ; [HRM Equation RT.04-1]
= AR ^{0.67}	1.15		Goal Seek to = (Q _{bolin} *n) / (1.49s ^{0.5}) by changing b; D-3, Method 1 [HRM Equation RT.04-1]
Bottom Width, b	6.7	ft	
Actual Bottom Width, b	7.0		2-10 ft [HRM Table RT.04.2]
Residence Time, t	9.00		For basic biofiltration swales [HRM pg 5-49]
Velocity, V _{biofil}	0.22		= Q _{blofil} / A, Max 1.0fps; D-5 [HRM Equation RT.04-2]
Swale Length , L	120.5	•	= V _{biofi} * t * 60(sec/min); D-6
	120.0		Min 100ft [HRM Table RT.04.2]
Actual Swale Length, L Top Width, T	9.36		= B + 2yz [HRM Table.04.5]
Number of Flow Spreaders	5.00	n	If b > 6ft recommended flow spreader every 50 ft plus one at inlet [HRM pg 5-56]
Freeboard	1.0	ft	Min 1.0ft [HRM Table RT.04.2]
Total Swale Depth	1.33		Freeboard plus Design Depth, y
Actual Top Width	1.33		includes Freeboard
Actual Top Length	132		includes Freeboard
Minimum Area Required	2,101		
	0.05		
Access Road Width	12.0	ft	[Figure RT.04.1]
Total Area Required	3,553	sq ft	Access Road Width added to Actual Top Width - access road running parallel to swale length
		acre	
NRCS Hydrologic Soil Group	В		
Underdrain Required	NO		[Figure RT.04.3]
Energy Dissipater Required	NO		[HRM-Design Site Elements, pg. 5-56]
Parallel Swales Required	NO		[Table RT.04.2; comment 2]
If parallel swales are required			
Swale Width	n/a	ft	
Swale Length	n/a	ft	
Water Surface Width	n/a	ft	
Water Surface Length	n/a	ft	
Actual Top Width	n/a	ft	both swales and assuming 2ft divider width
Actual Top Length Total Area Required	n/a		
Total Area Required	n/a	ac	

ICP Design CS-D (Outfall XX)

			1
DESIGN WORKSHEET FOR CONS	TRUCTED WETLANDS	5	
PROJECT:	Columbia River Crossing		
BASIN:	Columbia Slough		
OUTFALL:	0007		
LOCATIONUURISDICTION:	ODOT		
TREATMENT FACILITY:	Constructed Wetland		
FACILITY NAME: ORIGINAL DESIGN DATE:	CS-D 7/1/2012	20051	
ORIGINAL DESIGN DATE: UPDATED:	7/1/2012 10/29/2012	apprx	
DESIGNED BY:	C. Sourek		
CHECKED BY:	L. Line		
Parameter		Units	Comments
Preliminary Data Collection			
Contributing Impervious Area, CIA	2.30	acres	
Water Quality Volume, WQV	100188	sq-ft cu-ft	Delineated with CAD software, 10/2012 Calculated in MGSFlood with a 1-hour timestep (basic wet pond volume, 91% exceedance), includes facility surface area
Total Water Volume, VT	11263 11735		VT = V1 + V2 + V3; should meet or exceed WQV
Uppermost Layer of Facility Dimensions		ou it	
Top of Facility			
Total Top Width, W	50	ft	Primary input
Total Top Length, L	200	ft	Primary input
Total Top Surface Area, B	10000	sq-ft	= Total Top Length * Total Top Width
Top Elevation	36.5	ft	From contours/proposed surfaces
At Water Surface		.4	movimum 2:4. II IDA Uandhooku ng 51
Upland/Dry Side Slope, Z1	3	:1 #	maximum 3:1 [LIDA Handbook; pg. 51] 80% of WOV (Law Janact Devalopment Approaches (LIDA) Handbook: pg. 51]
Freeboard Depth Total Water Surface Width, W1	1.0		80% of WQV [Low Impact Development Approaches (LIDA) Handbook: pg. 51] = Total Top Width - (2 * Upland Side Slope * Freeboard Depth)
Total Water Surface Length, L1	194		= Total Top Length - (2 * Upland Side Slope * Freeboard Depth)
Total Water Surface Area, B1	8536	sq-ft	= W1*L1
Total Water Surface Area		acres	
Water Surface Elevation	35.5	ft	= Top Elevation - Freeboard Depth
At Berm			annimum Ed. (UDA Usedhadu en Et)
Wet Side Slope, Z3	5	:1	maximum 5:1 [LIDA Handbook; pg. 51]
Berm Width Water Depth Above Berm, h1	12	nt ft	per requirements???? per requirements????
Width (approx), W2	34	ft	= W1 - (2 * Z3 * h1)
Length (approx), L2	184		= L1 - (2 * Z3 * h1)
Surface Area, B2	6256	sq-ft	=L1*W1
Berm Elevation	35	ft	= Top Elevation - Freeboard Depth
Overall			
Volume of Water Above the Berm, V1	7367	cu-ft	frustum volume = (h/3) * (B1 + B2 + vB2*B1) (ODOT Hydraulics Manual: Equation 12-16) 12 inch minimum [LIDA Handbook; pg. 53]
Amended Soils Depth Forebay Design		III	12 mon minimum (2009) Tranuouov, pg. 33
Forebay Design Ideal Forebay Volume	2253	cu-ft	20% of WQV [Low Impact Development Approaches (LIDA) Handbook; pg. 51]
Actual Forebay Volume, VF	2779	cu-ft	= V2 + % of V1 as determine by (L2f + 1/2 of berm width) / L2; Should meet or exceed Ideal Forebay Volume
Calculated Volume, V2	1258	cu-ft	frustum volume = (h2/3) * (B2f + B3f + vB2fB3f); does not include volume above the berm [ODOT Hydraulics Manual; Equation 12-16]
At Water Surface			
Forebay Water Surface Width, W1f	44	ft	= W1
Forebay Water Surface Length, L1f	40		=Whatever makes L3f min of 4 ft OR {= 0.1 * L1}; Use goal seek to determine by setting L3f to 4; Adjust to obtain desired relative volumes
Forebay Water Surface Area, B1f At Berm	854	sq-ft	10% of Total Surface Area [LIDA Handbook: pg. 51]
Width (approx), W2f	34	ft	= W2
Length (approx), L2f	29		= U2 - (Z1 * h1) - (0.5 * Berm Width)
Surface Area at Berm, B2f		sq-ft	= W2f*L2f
Pond Bottom			
Depth Below Berm, h2		ft	
Forebay Side Slope, Z2		:1	H:V
Berm Side Slope, Zbf Elevation	4	:1 #	H:V = Berm Elevation - h2
Width (approx), W3f	10		= Bern Elevator - h_2 = W2 - (2 * Z3 * h_2)
Length (approx), L3f	5		= L2f - (Z3 * h2) - (Z2f * h2); Min 4 ft; Use Goal Seek to determine by changing L1f
Bottom Area, B3f		sq-ft	= W3f * L3f
Permenant Pool Design			
Calculated Volume, V3		cu-ft	V3 = 2Va + Vb + Vc + 2Vd (see notes)
	3110	oun	
At Water Surface			
At Water Surface Pool Water Surface Width, W1p	44	ft	= W1
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p		ft	= W1 = L1 - L1f OR {= 0.9 * L1}
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm	44	ft ft	= L1 - L1f OR {= 0.9 * L1}
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p	44	ft ft	= L1 - L1f OR (= 0.9 * L1) = W2
Al Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), L2p	44 154 34 143	ft ft	= L1 - L1f OR {= 0.9 * L1}
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), V2p Length (approx), L2p Surface Area at Berm, B2p,	44 154 34 143	ft ft ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p- (Z1 * h1) - (0.5 * Bern Width)
AI Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p AI Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3	44 154 34 143	ft ft ft sq-ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - (Z1 * h1) - (0.5 * Berm Width) = W2p* L2p maximum 2.5 ft (LIDA Handbook: pg. 52)
At Water Surface Pool Water Surface Wdth, W1p Pool Water Surface Length, L1p At Berm Witht (approx), W2p Length (approx), L2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3 Pool Side Siope, Z3	44 154 34 143 4862	ft ft ft sq-ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - (21 * h1) - (0.5 * Bern Width) = W2p * L2p = W2p * L2p maximum 2.5 ft (<i>LIDA Handbook: pg. 52</i>) maximum 5:1 (<i>LIDA Handbook: pg. 52</i>)
Al Water Surface Pool Water Surface Midth, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p Pond Bottom Max Depth Below Berm, h3 Pool Side Slope, Z3 Berm Side Slope, Z0p	44 154 143 143 143 145 15 5 5	ft ft ft sq-ft ft :1	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - (21 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 2.5 ft [/LDA Handbook: pg. 52] maximum 5:1 [/LDA Handbook: pg. 51] H√
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), U2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3 Pool Side Slope, Z3 Berm Side Slope, Zbp Elevation	44 159 134 143 143 143 143 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ft ft ft sq-ft ft :1 ft ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - (Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 5.1 (LIDA Handbook: pg. 52) maximum 5.1 (LIDA Handbook: pg. 51) HV = Berm Elevation - h3
Al Water Surface Pool Water Surface Endth, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), W2p Orad Bottom Max Depth Below Berm, B2p Pool Side Stope, 23 Berm Side Stope, 2bp Elevation Width (approx), W3p	444 154 143 143 143 145 145 145 145 145 145 145 145 145 145	ft ft ft sq-ft ft :1ft ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - [21 * h1) - (0.5 * Bern Width) = W2p 2 t2p maximum 2.5 ft [LIDA Handbook: pg. 52] maximum 5:1 [LIDA Handbook: pg. 52] H.V = Bern Elevation - h3 = W2p - (2 * 23 * h3)
Al Water Surface Pool Water Surface Midth, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p Pond Bottom Max Depth Below Berm, h3 Pond Sids Siope, Z3 Berm Side Slope, Z3 Berm Side Slope, Z0 Elevation Width (approx), W3p Length (approx), L3p	44 154 143 143 143 143 15 5 5 5 33 33 35 15 12 12	ft ft ft sq-ft ft :1 ft ft ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - (Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 5.1 (LIDA Handbook: pg. 52) maximum 5.1 (LIDA Handbook: pg. 51) HV = Berm Elevation - h3
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), U2p Surface Area at Berm, B2p Pond Bottom Max Depth Below Berm, h3 Pool Side Slope, Z3 Berm Side Slope, Zbp Elevation Width (approx), U3p Length (approx), L3p Bottom Area, B3	44 153 143 143 143 143 143 143 1486 15 5 5 5 5 5 5 1 33.0 33.0 12 8 12 8 2 432 2 432	ft ft ft sq-ft ft ft ft ft ft sq-ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p- (Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 5.1 (<i>LIDA Handbook: pg. 52</i>) maximum 5.1 (<i>LIDA Handbook: pg. 52</i>) H-V = Berm Elevation - h3 = W2p- (2* Z3 * h3) = L2p- (2* Z3 * h3) = L2p- (2* Z3 * h3) = W3p * L3p = W3p * L3p
Al Water Surface Pool Water Surface Midth, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), U2p Surface Area at Berm, B2p Pool Bottom Max Depth Below Berm, h3 Pool Side Siope, Z3 Berm Side Siope, Z3 Berm Side Siope, Zp Elevation Width (approx), L3p Bottom Area, B3 Volumes - Permenant Pool volumes were calcul	44 134 143 143 143 143 145 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ft ft ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - (Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum S.1 (LIDA Handbook: pg. 52) maximum S.1 (LIDA Handbook: pg. 51) H.V = Berm Elevation - h3 = W2p - (2 * Z3 * h3) = L2p - (Z3 * h3) - (Zbp * h3)
Al Water Surface Pool Water Surface Midth, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), U2p Surface Area at Berm, B2p Pool Bottom Max Depth Below Berm, h3 Pool Side Siope, Z3 Berm Side Siope, Z3 Berm Side Siope, Zp Elevation Width (approx), L3p Bottom Area, B3 Volumes - Permenant Pool volumes were calcul	44 154 34 143 144 143 144 144 155 153 153 1455 153 1457 1457 1457 1457 1457 1457 1457 1457	ft ft ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	= L1 - L1/OR (= 0.9 * L1) = W2 = L1p - (Z1 * h1) - (0.5 * Berm Width) = W2p + L2p maximum 2.5 ft (<i>LIDA Handbook: pg. 52</i>] maximum 5:1 (<i>LIDA Handbook: pg. 51</i>] H.V = Berm Elevation - h3 = W2p - (2 * Z3 * h3) = L2p - (Z3 * h3) - (Zbp * h3) = L2p - (Z3 * h3) - (Zbp * h3) = berm top to the pool bottom). The volume was modeled and calculated by slicing the pool into 6 simpler shapes. The volumes for umption. Actual pool volume will depend on contours and pooling areas within the main pool.
Al Water Surface Pool Water Surface Midth, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), U2p Surface Area at Berm, B2p Pool Bottom Max Depth Below Berm, h3 Pool Side Siope, Z3 Berm Side Siope, Z3 Berm Side Siope, Zp Elevation Width (approx), L3p Bottom Area, B3 Volumes - Permenant Pool volumes were calcul	44 154 34 143 144 143 144 144 155 153 153 1455 153 1457 1457 1457 1457 1457 1457 1457 1457	ft ft ft sq-ft ft ft ft ft ft ft ft ft ft sq-ft cu-ft	L1 - L1 / OR (= 0.9 * L1) W2 L1 - L1 / OR (= 0.9 * L1) W2 L1 - [Z1 * h1) - (0.5 * Berm Width) W2 / L2 maximum 2.5 ft /LIDA Handbook: pg. 52/ maximum 5.1 /LIDA Handbook: pg. 52/ Maximum 2.5 ft /LIDA Handbook: pg. 51/ HV Berm Elevation - h3 W2 - (2 * 23 * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) + (Zbp - Z3 * h3) Firm. V = ((1/3) * Z3 * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p -
At Water Surface At Water Surface Wdth, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3 Pool Side Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Z4 Elevation Width (approx), U3p Length (approx), L3p Bottom Area, B3 Volumes - Permenant Pool volumes were calculated and combined to Va	44 159 34 143 486 486 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ft ft ft ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	L1 - L1 / OR (= 0.9 * L1) W2 L1 - L1 / OR (= 0.9 * L1) W2 L1 - [Z1 * h1) - (0.5 * Berm Width) W2 / L2 maximum 2.5 ft /LIDA Handbook: pg. 52/ maximum 5.1 /LIDA Handbook: pg. 52/ Maximum 2.5 ft /LIDA Handbook: pg. 51/ HV Berm Elevation - h3 W2 - (2 * 23 * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) E/2 - (Z3 * h3) - (Zbp * h3) + (Zbp - Z3 * h3) Firm. V = ((1/3) * Z3 * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * h3) * (W2p - Z3 * h3) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p - Z3 * h3)) Firm. V = ((1/3) * (U2p -
AI Water Surface Pool Water Surface Length, L1p Pool Water Surface Length, L1p AI Berm Witht (approx), W2p Length (approx), L2p Surface Area at Berm, B2p Pond Bottom Max Depth Below Berm, B3 Pool Side Slope, Z3 Berm	44 158 34 143 143 143 143 143 155 155 155 155 155 191 191 191 192 2432 2432 193 193 1933 1933	ft ft ft ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	L1 - L1 f OR (= 0.9 * L1) W2p L1p - (21 * h1) - (0.5 * Bern Width) FW2p * U2p maximum 25.1 (<i>LIDA Handbook: pg. 52</i>) maximum 5.1 (<i>LIDA Handbook: pg. 52</i>) HV Bern Elevation - h3 EV2p - (2' 23 * h3) EV2p - (2' 23 * h3) EV3p + (2b + c3)
AI Water Surface Pool Water Surface Midth, W1p Pool Water Surface Length, L1p AI Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3 Pool Side Slope, Z3 Berm Side Slope, Z5 Elevation Width (approx), W3p Length (approx), W3p	44 158 34 143 143 143 143 143 155 155 155 155 155 191 191 191 192 2432 2432 193 193 1933 1933	ft ft ft ft sq-ft ft ft ft ft ft ft ft ft cu-ft cu-ft cu-ft	L1 - L1/OR {= 0.9 * L1} W2 L1p - [Z1 * h1) - (0.5 * Berm Width) W2p * L2p maximum 2.5 ft [/L/DA Handbook: pg. 52] maximum 5.1 [/L/DA Handbook: pg. 52] maximum 5.1 [/L/DA Handbook: pg. 51] H.V Berm Elevation - h3 W2p - (2.7 2* h3) [22 + (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) EV2p - (23 * h3) - (22p * h3) Firsm, V = (1(2) * h3)^* (V2p - 23*h3) Prism, V = 23 * h3^* + (1(2) * V2p - 23*h3) Prism, V = 23 * h3^* + (1(2) * V2p - 23*h3)
At Water Surface Pool Water Surface Midth, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), L2p Underson, L2p Dond Bottom Max Dopth Below Berm, h3 Pool Side Slope, Z3 Bern Side Slope, Z4 Bern Side Slope, Z5 Elevation Width (approx), W3p Length (approx), W3p Length (approx), U3p Bottom Area, B3 Volumes - Permenant Pool volumes were calculated and combined to Va Vb	44 158 34 143 143 143 143 143 155 155 155 155 155 191 191 191 192 2432 2432 193 193 1933 1933	ft ft ft ft sq-ft ft ft ft ft ft ft ft ft cu-ft cu-ft cu-ft	L1 - L1/OR {= 0.9 * L1} W2 L1p - [Z1 * h1) - (0.5 * Berm Width) W2p * L2p maximum 2.5 ft [<i>LIDA Handbook: pg. 52</i>] maximum 5.1 (<i>LIDA Handbook: pg. 52</i>] maximum 5.1 (<i>LIDA Handbook: pg. 51</i>] H.V Berm Elevation - h3 W2p - (2 * 2 * h3) EZ2 * (2 * h3) - (2 bp * h3) EZ2 * (2 * h3) - (2 bp * h3) EZ2 * (2 * h3) - (2 bp * h3) EZ2 * (2 * h3) - (2 bp * h3) EZ2 * (2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) + (2 + 2 + h3) + (2 + h
AI Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p AI Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p, Pool Boltom Max Depth Below Berm, h3 Pool Side Sope, Z3, Berm Side Slope, Z0, Elevation Width (approx), W3p Length (approx), L3p Boltom Area, B3 Volumes - Permenant Pool volumes were calculated and combined to Va Vc	44 158 34 143 143 143 143 143 155 155 155 155 155 191 191 191 192 2432 2432 193 193 1933 1933	ft ft ft ft sq-ft ft ft ft ft ft ft ft ft cu-ft cu-ft cu-ft	L1 - L1/OR {= 0.9 * L1} W2 L1p - [Z1 * h1) - (0.5 * Berm Width) W2p * L2p maximum 2.5 ft [<i>LIDA Handbook: pg. 52</i>] maximum 5.1 (<i>LIDA Handbook: pg. 52</i>] maximum 5.1 (<i>LIDA Handbook: pg. 51</i>] H.V Berm Elevation - h3 W2p - (2 * 2 * h3) EZ2 * (2 * h3) - (2 bp * h3) EZ2 * (2 * h3) - (2 bp * h3) EZ2 * (2 * h3) - (2 bp * h3) EZ2 * (2 * h3) - (2 bp * h3) EZ2 * (2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) - (2 bp * h3) EV2 + (2 * 2 * h3) + (2 + 2 + h3) + (2 + h

Notes:

Denotes input required Goal Seek to Determine Values Match equations to Forebay WS Length, L1f, if necessary

ICP Design CS-ICP-E (Outfall XX)

	RUCTED WETLANDS	\$	
PROJECT:	Columbia River Crossing		
	Columbia Slough		
OUTFALL:			
OCATION/JURISDICTION:	ODOT		
	Constructed Wetland		
FACILITY NAME:	CS-ICP-E		
	7/1/2012	apprx	
	10/29/2012		
	C. Sourek		
CHECKED BY:	L. Line		
Parameter		Units	Comments
Preliminary Data Collection Contributing Impervious Area, CIA	11.60	acres	
Sona baang impervious Area, GIA	505296		Delineated with CAD software, 10/2012
Nater Quality Volume, WQV	55907	cu-ft	Calculated in MGSFlood with a 1-hour timestep (basic wet pond volume, 91% exceedance), includes facility surface area
fotal Water Volume, VT	58489		VT = V1 + V2 + V3; should meet or exceed WQV
Ippermost Layer of Facility Dimensions			
op of Facility			
otal Top Width, W	130	ft	Primary input
otal Top Length, L	290	ft	Primary input
otal Top Surface Area, B	37700	sq-ft	= Total Top Length * Total Top Width
op Elevation	26.5	ft	From contours/proposed surfaces
t Water Surface			
lpland/Dry Side Slope, Z1	3	:1	maximum 3:1 [LIDA Handbook; pg. 51]
reeboard Depth	1.0		80% of WQV [Low Impact Development Approaches (LIDA) Handbook; pg. 51]
otal Water Surface Width, W1	124		= Total Top Width - (2 * Upland Side Slope * Freeboard Depth)
otal Water Surface Length, L1	284		= Total Top Length - (2 * Upland Side Slope * Freeboard Depth)
otal Water Surface Area, B1	35216		= W1 * L1
otal Water Surface Area	0.81	acres	
Vater Surface Elevation	25.5	π	= Top Elevation - Freeboard Depth
At Berm			
Vet Side Slope, Z3	5	:1	maximum 5:1 [LIDA Handbook; pg. 51]
Serm Width	12	II.	per requirements????
Vater Depth Above Berm, h1	1	Π	per requirements????
Vidth (approx), W2	114		= W1 - (2 * Z3 * h1)
ength (approx), L2 Surface Area, B2	274 31236		= L1 - (2 * Z3 * h1) = L1 * W1
Berm Elevation	25		= Top Elevation - Freeboard Depth
Dverall	20	n.	- top Elevation - Theopart Depart
/olume of Water Above the Berm, V1	33206	cu-ft	frustum volume = (h/3) * (B1 + B2 + vB2*B1) [ODOT Hydraulics Manual; Equation 12-16]
Amended Soils Depth		ft	12 inch minimum [LIDA Handbook; pg. 53]
Forebay Design			
Ideal Forebay Volume	11181	Cu-ft	20% of WQV [Low Impact Development Approaches (LIDA) Handbook; pg. 51]
Actual Forebay Volume, VF	11855		= V2 + % of V1 as determine by (L2f + 1/2 of berm width) / L2; Should meet or exceed Ideal Forebay Volume
Calculated Volume, V2	6644		frustum volume = (h2/3) * (B2f + B3f + vB2fB3f); does not include volume above the berm (DDOT Hydraulics Manual; Equation 12-16)
At Water Surface			
Forebay Water Surface Width, W1f	124	ft	= W1
Forebay Water Surface Length, L1f	45	ft	=Whatever makes L3f min of 4 ft OR {= 0.1 * L1}; Use goal seek to determine by setting L3f to 4; Adjust to obtain desired relative volumes
Forebay Water Surface Area, B1f	3522	sq-ft	10% of Total Surface Area [LIDA Handbook: pg. 51]
At Berm			
Width (approx), W2f	114		= W2
Length (approx), L2f	34		= L2 - (Z1 * h1) - (0.5 * Berm Width)
		sq-π	= W2f*L2f
	3876		
Pond Bottom		H	
Pond Bottom Depth Below Berm, h2	3	ft •1	
Pond Bottom Depth Below Berm, h2 Forebay Side Slope, Z2	3	:1	
Pond Bottom Depth Below Bern, h2 Forebay Side Slope, Z2 Berm Side Slope, Zbf	3 4 4	:1 :1	H:V
Pond Bottom Depth Below Berm, h2 Forebay Side Slope, Z2 Jerm Side Slope, Zbf Elevation	3 4 4 22	:1 :1 ft	H-V = Bern Elevation - h2
Pond Bottom Depth Below Berm, h2 orebay Side Slope, Z2 Jerm Side Slope, Zbf Elevation Vidth (approx), W3f	3 4 4	:1 :1 ft ft	H:V = Berm Elevation - h2 = W2 - (2 * Z3 * h2) = L21 - (Z3 * h2) - (Z21 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f
Pond Bottom Depth Below Berm, h2 Orebay Side Slope, Z2 Serm Side Slope, Zbf Elevation Width (approx), W3f ength (approx), L3f	3 4 4 22 90 90	:1 :1 ft ft	H-V. = Berm Elevation - h2 = W2- (2: Z3 * h2)
Pond Bottom Pepth Below Berm, h2 orobay Side Slope, Z2 Jerm Side Slope, Z5 Jerm Side Slope, Z5f Jevation Vidith (approx), V3f Jevation Area, B3f Permenant Pool Design	3 4 4 22 90 90	:1 :1 ft ft sq-ft	H-V. = Berm Elevation - h2 = W2 - (2 * 73 * h2) = L27 - (23 * h2) - (22 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3f * L3f
Vond Bottom Verpti Below Berm, h2 Verbey Side Sope, Z2 Verm Side Sope, Zbf Vertin (approx), W3f vertin (approx), U3f Vertin (a	3 4 4 22 90 90	:1 :1 ft ft ft sq-ft	H:V = Berm Elevation - h2 = W2 - (2 * Z3 * h2) = L21 - (Z3 * h2) - (Z21 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f
rond Bottom Pepth Below Bern, h2 orebay Side Stope, Z2 term Side Stope, Zbf Jevation Vidth (approx), U3f orght (approx), U3f orght (approx), U3f Ottom Area, B3f Permenant Pool Design Salculated Volume, V3 Water Surface	3 4 4 22 90 10 900 900	:1 ft ft ft sq-ft cu-ft	H-V. = Bern Elevation - h2. = W2 - (2 * 23 * h2) = L21 - (23 * h2) - (221 * h2); Min 4 ft; Use Goal Seek to determine by changing L1! = W31*L3f V3 = 2Va + Vb + Vc + 2Vd (see notes)
Pond Bottom Pepth Below Bern, h2 orrebay Side Slope, Z2 Jerm Side Slope, Z5 Jerm Side Slope, Z5 Jernator Jerna	3 4 4 22 900 10 900 10659 10659	:1 ft ft ft sq-ft cu-ft	H-V. = Berm Elevation - h2 = W2- (22 * 3* h2) = = 121 - (23 * h2) - (221* h2); Min 4 ft; Use Goal Seek to determine by changing L1f = = W3* L3#
Vond Bottom Verpti Below Berm, h2 Verbey Side Stope, Z2 Verbey Side Stope, Z5 Verber Side Stope, Z5 Verber Stope, Z	3 4 4 22 90 10 900 900	:1 ft ft ft sq-ft cu-ft	H-V. = Bern Elevation - h2. = W2 - (2 * 23 * h2) = L21 - (23 * h2) - (221 * h2); Min 4 ft; Use Goal Seek to determine by changing L1! = W31*L3f V3 = 2Va + Vb + Vc + 2Vd (see notes)
Pond Bottom Pepth Below Bern, h2 orrebay Side Slope, Z2 Jerm Side Slope, Z5 Jevalion Vicht (approx), W3f ength (approx), U3f Safoulation Area, B3f Permenant Pool Design Safoulated Volume, V3 Vi Waler Surface Pool Water Surface Midh, W1p Pool Water Surface Length, L1p V Berrm	3 4 22 90 10 900 10 18639 124 239	:1 :1 ft ft ft sq-ft cu-ft ft ft	H-V. = Berm Elevation - h2. = W2 - (22 * h2) = W2 - (22 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = U21 - (Z3 * h2) - (Z2 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W31 + US + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1)
Pond Bottom Pepth Below Bern, h2 orrebay Side Slope, Z2 Jerm Side Slope, Z5 Jerm Side Slope, Z5 Jermenant Pool Design Partennant Pool Design Parculated Volume, V3 NI Water Surface Width, W1p Pool Water Surface Length, L1p NI Berm Vight (approx), W2p.	3 4 4 22 900 10 900 10 900 10639 10639 10239 1124 114	:1 :1 ft ft ft ft sq-ft cu-ft ft ft	H-V. = Berm Elevation - h2 = W2 - (2 2 3 h2) = U2 - (2 3 h2) - (22 t h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 t L3 t V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1) = W2
rond Bottom Pepth Below Berm, h2 probab Sides Signe, Z2 term Side Signe, Z2 term Side Signe, Z0 terration angth capprox), L3 votation Area, B3 rength approx, L3 dottom Area, B3 rength Approx, V3 twars Surface tool Water Surface Width, W1p tool Water Surface Length, L1p t Berm Vidth Capprox), U2p	3 4 4 22 90 10 900 900 900 900 900 900 900 900 9	:1 :1 ft ft ft ft cu-ft ft ft ft	H-V. = Berm Elevation - h2. = W2 - (22 23 * h2) = = W2 - (22 7 * h2); Min 4 ft; Use Goal Seek to determine by changing L1! = = W3 - (23 * h2) - (22 * h2); Min 4 ft; Use Goal Seek to determine by changing L1! = = W3 - (23 * h2) - (22 * h2); Min 4 ft; Use Goal Seek to determine by changing L1! = = W3 - (23 * h2) - (22 * h2); Min 4 ft; Use Goal Seek to determine by changing L1! = = W3 - (23 * h2) - (23 * h2); Min 4 ft; Use Goal Seek to determine by changing L1! = = W1 - (15 ft or (= 0.9 * L1)) = = W2 - (21 * h1) - (0.5 * Bern Width) =
Pond Bottom Pepth Below Bern, h2 orebay Side Slope, Z2 Perm Side Slope, Z5 Perm Side Slope, Zbf Permenant Pool Design Permenant Pool Design Palculated Volume, V3 Vider Surface Pool Water Surface Length, L1p Vider Surface Pool Water Surface Length, L1p K Berm Vidh Gapprox), W2p ength (approx), W2p L2p Surface Area at Berm, B2p	3 4 4 22 900 10 900 10 900 10639 10639 10239 1124 114	:1 :1 ft ft ft ft cu-ft ft ft ft	H-V. = Berm Elevation - h2 = W2 - (2 2 3 h2) = U2 - (2 3 h2) - (22 t h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 t L3 t V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1) = W2
Pond Bottom Pepth Below Bern, h2 oroebay Side Slope, Z2 Jerm Side Slope, Z5 Jerm Side Slope, Z5 Jermenant Pool Design Partennant Pool Design Parculated Volume, V3 Nt Water Surface Width, W1p Pool Water Surface Width, W1p Pool Water Surface Length, L1p Nt Berm Wdth (approx), U2p Length (approx), U2p Length (approx), U2p Length (approx), U2p Cond Bottom	3 4 4 22 90 10 900 10 900 18639 1124 239 1124 239 114 225992	:1 :1 ft ft ft cu-ft ft ft ft ft ft ft ft	H-V. = Berm Elevation - h2 = W2 - (22 * h2) - (22 * h2): Min 4 ft; Use Goal Seek to determine by changing L1f = L21 - (23 * h2) - (22 * h2): Min 4 ft; Use Goal Seek to determine by changing L1f = W3* L3# V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1) = W2 = L1 - L1f OR (= 0.9 * L1) = W2 = L1 - L2 = W2 = L2 = L2 = W2 = L2 = W2 = L2 = W2 = L2
Pond Bottom Pepth Below Berm, h2 Groebay Side Slope, Z2 Barm Side Slope, Z5 Jevation Jevation Vidth (approx), W3f ength (approx), U3f Safotim Area, B3f Permenant Pool Design Salculated Volume, V3 Vit Water Surface Vold Water Surface Holdh, W1p Pool Water Surface Length, L1p N Berrm Width (approx), L2p Surface Area at Berrn, B2p, Pond Bottom Aka Depth Below Bern, h3	3 4 4 22 90 10 900 900 900 900 900 900 900 900 9	:1 :1 ft ft ft cu-ft ft ft ft ft ft ft ft	H-V. = Berm Elevation - h2. = W2 - (22 * h2) = L27 - (Z3 * h2) - (Z2* h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1) = W2 - (Z1* h1) - (0.5* Berm Width) = V2p * L2p maximum 2.5 ft (LIDA Handbook: pg. 52]
Pond Bottom Pepth Below Bern, h2 Groebay Side Slope, Z2 Perm Side Slope, Z5 Perm Side Slope, Z5 Permenant Pool Design Permenant Pool Design Palculated Volume, V3 Vidiar Surface Pool Water Surface Pool Side Slope, Z3 Pool Side Slope, Z3	3 4 4 22 90 10 900 10 900 18639 1124 239 1124 239 114 225992	:1 :1 ft ft ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	H-V. = Berm Elevation - h2 = W2 - (22 ' 3' h2) = L27 - (23 ' h2) - (22 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 - (23 ' h2) - (22 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 - (23 ' h2) - (22 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 - (23 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W4 - (23 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W1 - (13 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W1 - (13 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W1 - (13 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W1 - (13 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W1 - (13 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W1 - (13 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W1 - (13 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W1 - (13 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W1 - (13 ' h2) - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (23 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (25 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (25 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (25 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (25 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (25 ' h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W2 - (25 ' h2); Min 4 ft;
rond Bottom Pepth Below Berm, h2 rorebay Side Stope, Z2 Jernem Side Stope, Z2 Jernem Side Stope, Z0 Jerafili (approx), V3f angth (approx), V3f Angth (approx), V3f All Valer Surface Stallastard Volume, V3 All Valer Surface Nidh, W1p Stool Water Surface Length, L1p H Berm Width (approx), W2p ength (approx), L2p Unface Area at Berm, B2p Store Bottom fax Depth Below Berm, h3 Stol Stope, Z3 Berne Stoel Stope, Z5 Stope, Zbp	3 4 4 22 90 10 900 900 900 900 900 900 900 900 9	:1 :1 ft ft ft ft ft ft ft ft ft ft	H-V. = Berm Elevation - h2. = W2 - (2* 23*h2) = W2 - (2* 23*h2) = W2 - (2* 23*h2) - (22*h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3f*L3f = W3f*L3f = W1 = L1 - L1FOR (= 0.9*L1) = L1 - L1FOR (= 0.9*L1) = W2 = W2 = W2 = U1, 0.5* Bern Width) = W2p*L2p = M2 = W1 = L1 - L1FOR (= 0.9*L1) = W2 = L1 - L1FOR (= 0.9*L1) = W2 = U2 - (21*h1) - (0.5* Bern Width) = W2p*L2p maximum 2.5 ft [LIDA Handbook; pg. 52] maximum 5:1 (LIDA Handbook; pg. 52] maximum 5:1 (LIDA Handbook; pg. 52]
Pond Bottom Pepth Below Berm, h2 orebay Side Stope, Z2 Herm Side Stope, Z4 Jearation Vidin (approx), U3/ angth (approx), U3/ angth (approx), U3/ alcolated Volume, V3 V Vafer Surface bod Water Surface Length, L1p H Berm Widh (approx), L2p surface Area at Berm, B2p ond Side Stope, Z3 sem Side Stope, Z3 emm Side Stope, Z4	3 4 4 22 90 10 900 10 900 10 900 900 900 900 900	:1 :1 ft ft ft ft ft ft ft ft ft ft ft ft ft	H-V. = Berm Elevation - h2 = W2 - (2 * 23 * h2) - (221 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = L21 - (23 * h2) - (221 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W3 = L1 - L11 OR (= 0.9 * L1) = L1 - L11 OR (= 0.9 * L11 OR (= 0.9 * L11) = L1 - L11 OR (= 0.9 * L11 OR (= 0.9
Pond Bottom Pepth Below Bern, h2 Pepth Below Bern, h2 Pepth Below Bern, h2 Permetar Pool Design Permenant Pool Design Palculated Volume, V3 VitWater Surface Width, W1p Pool Water Surface Width, W1p Pool Water Surface Length, L1p Vit Berm Vitth (approx), L2p Pendth (approx), L2p Pool Bottom Nata Depth Below Bern, h3 Pool Side Slope, Z3 Perm Side Slope, Z5 Pervalion Vidth (approx), W3p Pervalion Pervaliant	3 4 4 22 900 10 900 18639 18649 18639 18639 18639 18639 18639 18639 18639 18639 18639 18639 1863	:1 :1 ft ft ft ft ft ft ft ft ft ft	H-V. = Berm Elevation - h2: = W2: (2: 23*h2) = L2: - (23*h2) - (22*h2): Min 4 ft; Use Goal Seek to determine by changing L1f = W4 * L3 V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9*L1) = W2 = W2 + 2Va maximum 5.1 (LIDA Handbook: pg. 52) maximum 5.1 (LIDA Handbook: pg. 52) maximum 5.1 (LIDA Handbook: pg. 51) HV = W2 + (2*3*h3)
Pond Bottom Pepth Below Berm, h2 Groebay Side Slope, Z2 Jarm Side Slope, Z5 Jevation Jevation Vidth (approx), W3f ength (approx), U3f Satolan Area, B3f Permenant Pool Design Satolated Volume, V3 Vitth Valer Surface Vold Water Surface Holdh, W1p Vool Water Surface Length, L1p N Berrm Wdth (approx), L2p Pond Bottom Parm Side Slope, Z3 Serm Side Slope, Zb Sterm Side Slope, Zb	3 4 4 22 90 10 900 900 900 900 900 900 900 16639 124 2289 114 2289 25992 1.5 5 5 0 23.0 99 223.0	:1 :1 ft ft ft ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	H-V. = Berm Elevation - h2 = W2 - (2 * 23 * h2) - (221 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = L21 - (23 * h2) - (221 * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W2 = L1 - L11 OR (= 0.9 * L1) = W3 = L1 - L11 OR (= 0.9 * L1) = L1 - L11 OR (= 0.9 * L11 OR (= 0.9 * L11) = L1 - L11 OR (= 0.9 * L11 OR (= 0.9
rond Bottom Pepth Belw Bern, h2 orebay Side Stope, Z2 Jerm Side Stope, Z2 Jerm Side Stope, Z4 Jerm Side Stope, Z4 Jerm Side Stope, Z4 Jermenant Pool Design Participated Volume, V3 Valier Surface Participated Volume, V3 U Valer Surface Valer Surface Length, L1p U Valer Surface Math Cardace Length, L1p U Valer Surface Participated Volume, V3 U Valer Surface Participated Volume, V3 Valer Surface Valer Surface	3 4 4 22 300 10 900 18639 10 18639 10 18639 239 114 228 25992 115 5 5 5 5 2200 2992 213 2103	:1 :1 ft ft ft ft ft ft ft ft ft ft ft ft ft	H-V. = Berm Elevation - h2 = W2 - (2: Z3 * h2) - (Z2' * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = L21 - (Z3 * h2) - (Z2' * h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W4 + (L3) V3 = 2Va + Vb + Vc + 2Vd (see notes) = W1 = L1 - L1f OR (= 0.9 * L1) = W2 = Bern Elevation - h3 = W2 = U2 = U2 = W3 = W3 = W3 = W3 = W3 = W3
rond Bottom Pepth Below Berm, h2 research State Stope, Z2 term State Stope, Z2 term State Stope, Z0 Pertain State Stope, Z0 Pertain State State State Pertain State State Pertain State State State Stope, Z2 Pertain State Stope, Z2 Pertain Perta	3 4 4 22 90 10 900 10 900 900 10839 10839 118539 23992 11853 114 22892 25992 15 5 5 5 5 5 230 9 9 9 213 21067 20067 2000	:1 :1 ft ft ft ft ft ft ft ft ft ft	H-V. = Bern Elevation - h2: = W2 - (22 * h2) - (22 * h2) - (22 * h2). Min 4 ft; Use Goal Seek to determine by changing L1f = L2 - (23 * h2) - (22 * h2). Min 4 ft; Use Goal Seek to determine by changing L1f = W4 * L3 V3 = 2Va + Vb + Vc + 2Vd (see notes). = W1 = L1 - L1f OR (= 0.9 * L1) = W2 = W2 = L1 - L1 fOR (= 0.9 * L1) = W2 = W2 = L1 - L1 fOR (= 0.9 * L1) = W2 = W2 = L1 - L1 fOR (= 0.9 * L1) = W2 = W2 = W2 = (2 * 1h1) - (0.5 * Bern Width) = W2 = (2 * L2) maximum 5.1 (LIDA Handbook: pg. 52) maximum 5.1 (LIDA Handbook: pg. 51) HV = Bern Elevation - h3 = W2 = (2 * 23 * h3) - (2bp * h3) = L2 - (23 * h3) - (2bp * h3) = W2 = (2 * 23 * h3) - (2bp * h3) = bern top to the pool bottom). The volume was modeled and calculated by slicing the pool into 6 simpler shapes. The volumes for
Pand Bottom Depth Below Berm, h2 Groebay Stide Stope, 22 Jerm Stide Stope, 24 Jerardin Area, B3 Vidth (approx), V3f Jerardin Area, B3 Jaculated Volumes, V3 At Water Surface Deol Water Surface Length, L1p At Berm Vidth (approx), V2p Jerm Stide Stope, Z3 Jerm Stide Stope, Z3 Jerm Stide Stope, Z3 Jerm Stide Stope, Z3 Jerm Stide Stope, Z5 Jerm Sto	3 4 4 4 22 90 10 900 900 900 16639 124 239 114 225992 1.5 5 5 23.0 99 213 21087 21087 21087 ed assuming a sloped botomoretermine overall volume. This	:1 :1 ft ft ft ft ft ft ft ft ft ft	H-V. = Berm Elevation - h2. = W2 - (22 * h2) = U2 - (22 * h2) = U3 - (Z2 * h2) = U3 - (Z2 * h2) = U3 - (Z2 * h2) = W1 = U1 - L1f OR (= 0.9 * L1) = W2 = W2 = U2 - (Z2 * h2) = W1 = L1 - L1f OR (= 0.9 * L1) = W2 = W2 = W1 = W2 = U1 - L1f OR (= 0.9 * L1) = W2 = W2 = U2 - (Z1 * h1) - (0.5 * Bern Width) = W2 = W2 = U2 - (Z1 * h3) = U2 + (Z1 * h3)
Pond Bottom Pepth Below Bern, h2 Groebay Side Slope, Z2 Jerm Side Slope, Z2 Jerm Side Slope, Z5 Jerwalion Vidth (approx), V3f ength (approx), L3f Permenant Pool Design Parmenant Pool Pool Pool Pool Pool Parmenant Pool Pool Pool Pool Parmenant Pool Pool Pool Pool Pool Pool Pool Parmenant Pool Pool Pool Pool Pool Pool Pool Poo	3 4 4 22 900 10 900 900 18639 10 18639 10 18639 114 228 25992 115 5 5 5 5 5 5 225992 2133 21087 ed assuming a sloped bottor termine overall volume. This 87000000000000000000000000000000000000	:1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :	H-V. = Berm Elevation - h2: = W2 - (2: Z3 * h2) - (Z2' + h2); Min 4 ft; Use Goal Seek to determine by changing L1f = L2 - (Z3 * h2) - (Z2' + h2); Min 4 ft; Use Goal Seek to determine by changing L1f = W1 = L1 - L1f OR {= 0.9 * L1} = W2 - (2' Z3 * h2) = W1 = L1 - L1f OR {= 0.9 * L1} = W2 = Bern Elevation - h3 = W2 = W2 = W2 = U2 = W2 = W2 = W2 = Bern Elevation - h3 = W2 = U2 = W2 = W2 = W2 = W2 = W3 = W3 = Bern Elevation - h3 = U2 = W2 = W2 = W2
Jarm Side Stope, Zbf Elevation Vichl (approx), W3f .ength (approx), U3f Jatom Area, B3f Permenant Pool Design Calculated Volume, V3 At Water Surface Pool Water Surface Pool Water Surface Length, L1p At Berm Width (approx), U2p Surface Area Berm, B2p Pond Bottom Max Depth Below Berm, h3 Pool Side Slope, Z3 Serm Side Slope, Z3 Sertom Area, B3 Volumes - Permenant Pool volumes were calculated and combined to de Va	3 4 4 4 22 90 10 900 10 900 10 900 10 900 10 900 114 228 25992 15 5 5 5 5 09 21087 ed assuming a sloped bottom 827 1637 18372 18372 18372	1 1 1 1 1 1 1 1 1 1 1 1 1 1	H-V. = Berm Elevation - h2. = W2 - (2: 23*h2) - (22*h2). Min 4 ft; Use Goal Seek to determine by changing L1f = L2f - (.23*h2) - (22*h2). Min 4 ft; Use Goal Seek to determine by changing L1f = W4 = W1 = L1 - L1f OR (= 0.9*L1) = W1 = L1 - L1f OR (= 0.9*L1) = W2 = W1 = L1 - L1 OR (= 0.9*L1) = W2 = L1 - L1 DA Handbook: pg. 52] maximum 5.5 ft [LIDA Handbook: pg. 52] maximum 2.5 ft [LIDA Handbook: pg. 51] HV = Berm Elevation - h3 = U2p - (2*23*h3) - (2bp*h3) = U3p - (2*C3*h3) - (2bp*h3) = W3p ' L3p = W3p ' L3p = W3p ' L3p - (2bp ' h3) = Pyramid, V = (1(13) ' 23 ' h3p' (L2p - 23'h3) = Pyramid, V = (1(12) ' h3' (L2p - 23'h3) Pyramid, V = (1(12) ' h3' (L2p - 23'h3) Pirm. V = (1(12) ' h3' (L2p - 23'h3)
Pond Bottom Perful Below Bern, h2_ orcheay Side Slope, Z2 Perm Side Slope, Z4 Pervation Width (approx), U3F Permenant Pool Design Calculated Volume, V3 Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Vidth (approx), U2pength (approx), L2p Ool Water Surface Length, L1p At Berm Vidth (approx), U2pength (approx), L2p Dond Bottom Vidth (approx), L2p Pond Bottom Vidth (approx), L2p Pervation Vidth (approx), L2p Determine Pervation Vidth (approx), L2p Determine Vidt	3 4 4 4 22 90 10 900 900 900 16639 16639 114 228 25992 1.5 5 5 30 99 213 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{l} HV, \\ = Berm [levation - h2, \\ = W2 - (2 \times 2^* h2) \\ = V2^* - (2 \times 2^* h2) \\ = V2^* - (2 \times 2^* h2) \\ = V3^* - (2 \times 2^* h2) \\ = V3^* - (2 \times 2^* h2) \\ = V3^* - V3^* + V5 + V6 + V6 + V6 + V6 \\ = V4 \\ = V1 \\ = V2 \\ = V1 \\ = V1 \\ = V2 \\ = V3 \\ = V2 \\ = V$
Pond Bottom Depth Below Bern, h2 Orebay Side Stope, Z2 Jarm Side Stope, Z5 Elevation Victh (approx), V3f Jadtom Area, B3f Permenant Pool Design Datoutard Volume, V3 At Water Surface Pool Water Surface Length, L1p At Water Surface Pool Water Surface Length, L1p At Water Surface Pool Water Surface Length, L1p At Bern Width (approx), W2p Jarface Area at Berm, B2p Pond Bottom Max Depth Below Berm, h3 Pool Side Stope, Z3 Jerm Side Stope, Z3 Jerm Side Stope, Z3 Jern Side Stope, Z3 Jostom Area, B3 Volumes - Permenant Pool volumes were calculated hose shapes were calculated and combined to de Va	3 4 4 4 22 90 10 900 10 900 10 900 10 900 10 900 114 228 25992 15 5 5 5 5 09 21087 ed assuming a sloped bottom 827 1637 18372 18372 18372	1 1 1 1 1 1 1 1 1 1 1 1 1 1	H-V. = Berm Elevation - h2. = W2 - (2: 23*h2) - (22*h2). Min 4 ft; Use Goal Seek to determine by changing L1f = L2f - (.23*h2) - (22*h2). Min 4 ft; Use Goal Seek to determine by changing L1f = W4 = W1 = L1 - L1f OR (= 0.9*L1) = W1 = L1 - L1f OR (= 0.9*L1) = W2 = W1 = L1 - L1 OR (= 0.9*L1) = W2 = L1 - L1 DA Handbook: pg. 52] maximum 5.5 ft [LIDA Handbook: pg. 52] maximum 2.5 ft [LIDA Handbook: pg. 51] HV = Berm Elevation - h3 = U2p - (2*23*h3) - (2bp*h3) = U3p - (2*C3*h3) - (2bp*h3) = W3p ' L3p = W3p ' L3p = W3p ' L3p - (2bp ' h3) = Pyramid, V = (1(13) ' 23 ' h3p' (L2p - 23'h3) = Pyramid, V = (1(12) ' h3' (L2p - 23'h3) Pyramid, V = (1(12) ' h3' (L2p - 23'h3) Pirm. V = (1(12) ' h3' (L2p - 23'h3)
Pond Bottom Pepth Below Bern, h2_ orcebay Side Slope, Z2 Perm Side Slope, Z4 Perm Side Slope, Z5 Permanan Pool Design Permanan Pool Pool Permanan Pool Water Surface Widht, W1p Pool Water Surface Length, L1p N Berm Wath (approx), W2p	3 4 4 4 22 90 10 900 900 900 16639 16639 114 228 25992 1.5 5 5 30 99 213 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{l} HV, \\ = Berm [levation - h2, \\ = W2 - (2 \times 2^* h2) \\ = V2^* - (2 \times 2^* h2) \\ = V2^* - (2 \times 2^* h2) \\ = V3^* + V5 + V6 + V6 + V6 \\ = V3^* + V5 + V6 + V6 + V6 \\ = W1 \\ = W1 \\ = U1 - L1 CR (= 0.9^* L1) \\ = W2 \\ = U1 - L1 CR (= 0.9^* L1) \\ = W2 \\ = U1 - L1 CR (= 0.9^* L1) \\ = W2 \\ = U2 \\ = U2 \\ = V2 \\ = U2 \\ = U2 \\ = U2 \\ = V2 \\ = U2 \\ = U2 \\ = V2 \\ = U2 \\ = U2 \\ = V2 \\ = V3 \\ = V2 \\ = V2 \\ = V2 \\ = V3 \\ = V2 \\ = \mathsf$
Pond Bottom Pond Bottom Popth Below Bern, h2_ Groebay Side Slope, 22 Jerrm Side Slope, 25 Jervation Vidth (approx), U3F Permenant Pool Design Jalculated Volume, V3 Water Surface Vol Water Surface Midh, W1p Nool Water Surface Length, L1p N Berm Width (approx), W2p ength (approx), U2p Pond Bottom Max Depth Below Bern, h3 Nool Side Slope, Z3 Jerm Side Slope, Z3 Jerm Side Slope, Z3 Jerm Side Slope, Z4 Jerm Side Slope, Z5 Jerm Side Slope, Z5 Jerm Side Slope, Z5 Jerm Side Slope, Z5 Jermation Nidth (approx), U3p Jermation Nidth (approx), U3p Jerm	3 4 4 4 22 90 10 900 900 900 16639 16639 114 228 25992 1.5 5 5 30 99 213 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087 21087	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{l} HV, \\ = Berm [levation - h2, \\ = W2 - (2 \times 2^* h2) \\ = V2^* - (2 \times 2^* h2) \\ = V2^* - (2 \times 2^* h2) \\ = V3^* + V5 + V6 + V6 + V6 \\ = V3^* + V5 + V6 + V6 + V6 \\ = W1 \\ = W1 \\ = U1 - L1 CR (= 0.9^* L1) \\ = W2 \\ = U1 - L1 CR (= 0.9^* L1) \\ = W2 \\ = U1 - L1 CR (= 0.9^* L1) \\ = W2 \\ = U2 \\ = U2 \\ = V2 \\ = U2 \\ = U2 \\ = U2 \\ = V2 \\ = U2 \\ = U2 \\ = V2 \\ = U2 \\ = U2 \\ = V2 \\ = V3 \\ = V2 \\ = V2 \\ = V2 \\ = V3 \\ = V2 \\ = \mathsf$

Notes:

Denotes input required Goal Seek to Determine Values Match equations to Forebay WS Length, L1f, if necessary

DESIGN WORKSHEET FOR BIOFILTRATION SWALES

PROJECT: BASIN: OUTFALL:	Columbia River Crossing Columbia Slough	29-Oc	t Prepared by: C. Sourek Checked by: L.Line
LOCATION/JURISDICTION:	ODOT		
TREATMENT FACILITY:	Biofiltration Swale(s)		
FACILITY NAME:	CS-F		
Parameter		Units	Comments
Preliminary Steps (P) from WSDOT HRM N	ovember 2011, pg 5-41		
Impervious Area A	65,340		
Water Quality Design Storm Depth, P	1.50	acre	Delineated in Cad dgn file 2yr-24hr (45.6387° N, 122.6615° W) [NOAA Atlas 2, Precipitation Frequency Data Output]
Runoff Treatment Design Flow Rate, Q _{wq}	0.12		Cont. Model in MGSFlood; P-1; includes swale surface area
2	1.50		72% of the 2yr-24hr precipitation depth (6month-24hr precip can be used instead) [HRM pg. 5-44]
P(72%-2yr)		In	
	3.71	,	= 2.5*P _(72%-2y) - 0.052 (for off-line bioswales in western WA) [HRM pg 5-44]
Biofiltration Design Flow Rate, Q _{biofil}	0.45		$= k^{2}Q_{w_{0}} P - 2$
Longitudinal Slope, s	<u> </u>		Recommended 1.5-5.0%; P-3 [HRM Table RT.04.2]
Manning "n"	0.35		Assuming surface roughening features, n=0.35; P-4 [HRM Table RT.04.1]
<u> </u>			
Design Steps (D) from WSDOT HRM Nover	10		
Design Depth, y		in	Assuming infrequent mowing; D-1 [HRM Table RT.04.2]
Treatment Area aida alana a	0.33		nor MCDOT maintanance request 25Nov09. Transmidel abornet: D.9
Treatment Area side slope, z Cross-Sectional Area, A		:1 sqft	per WSDOT maintenance request 25Nov08, Trapezoidal channel; D-2 = (b + zy)*y; D-4 [HRM Table RT.04.5]
Wetted Perimeter, P	7.54		$= b + 2y^{*}(1+z^{2})^{0.5}$ [HRM Table RT.04.5]
Hydraulic Radius, R	0.27		= A / P [HRM Table RT.04.5]
	0.85		Goal Seek to = AR ^{0.67} by changing Q _{we} [HRM Equation RT.04-1]
= (Q _{biofil} *n) / (1.49s ^{0.5}) = AR ^{0.67}	0.85		Goal Seek to = $(Q_{bolt}^*n) / (1.49s^{0.5})$ by changing b; D-3, Method 1 [HRM Equation RT.04-1]
Bottom Width, b	4.8		
Actual Bottom Width, b	5.0		2-10 ft [HRM Table RT.04.2]
Residence Time, t	9.00	min	For basic biofiltration swales [HRM pg 5-49]
Velocity, V _{biofil}	0.22	fps	= Q _{biofil} / A, Max 1.0fps; D-5 [HRM Equation RT.04-2]
Swale Length , L	117.8	ft	= V _{biofi} * t * 60(sec/min); D-6
Actual Swale Length, L	118.0		Min 100ft [HRM Table RT.04.2]
Top Width, T	7.45	ft	= B + 2yz [HRM Table.04.5]
Number of Flow Spreaders Freeboard	1.0	ft	If b > 6ft recommended flow spreader every 50 ft plus one at inlet [HRM pg 5-56] Min 1.0ft [HRM Table RT.04.2]
Total Swale Depth	1.33		Freeboard plus Design Depth, y
Actual Top Width	15		includes Freeboard
Actual Top Length	129		includes Freeboard
Minimum Area Required	1,824		
Access Road Width	0.04	acre ft	[Figure RT.04.1]
Total Area Required	3,240		Access Road Width added to Actual Top Width - access road running parallel to swale length
		acre	
NRCS Hydrologic Soil Group	В		
Underdrain Required	NO		[Figure RT.04.3]
Energy Dissipater Required Parallel Swales Required	NO NO		[HRM-Design Site Elements, pg. 5-56]
	NO		[Table R1.04.2; comment 2]
If parallel swales are required			
Swale Width	n/a		
Swale Length	n/a		
Water Surface Width	n/a		
Water Surface Length Actual Top Width	n/a n/a		both swales and assuming aft divider width
Actual Top Width Actual Top Length	n/a n/a		both swales and assuming 2ft divider width
Total Area Required		ac	

٦

ICP Design CS-G (Outfall XX)

	TRUCTED WETLANDS	5	
PROJECT:	Columbia River Crossing		
BASIN:	Columbia Slough		
OUTFALL:			
LOCATION/JURISDICTION:	ODOT		
TREATMENT FACILITY:	Constructed Wetland		
FACILITY NAME:	CS-G		
ORIGINAL DESIGN DATE:		apprx	
UPDATED:	10/29/2012	-44.4	
DESIGNED BY: CHECKED BY:	C. Sourek L. Line		
SHECKED BY:	L. Line		
Parameter		Units	Comments
Preliminary Data Collection			
Contributing Impervious Area, CIA	5.20	acres	
	226512	sq-ft	Delineated with CAD software, 10/2012
Water Quality Volume, WQV	25273	cu-ft	Calculated in MGSFlood with a 1-hour timestep (basic wet pond volume, 91% exceedance), includes facility surface area
Total Water Volume, VT	28079		VT = V1 + V2 + V3; should meet or exceed WQV
Uppermost Layer of Facility Dimensions			
Top of Facility			
		0	
Total Top Width, W	90	tt	Primary input
Total Top Length, L	220	π	Primary input
Total Top Surface Area, B	19800	sq-ft	= Total Top Length * Total Top Width
Top Elevation	27.0	ft	From contours/proposed surfaces
At Water Surface			
Upland/Dry Side Slope, Z1	2	:1	maximum 3:1 [LIDA Handbook; pg. 51]
Freeboard Depth	1.0	ft	80% of WQV [Low Impact Development Approaches (LIDA) Handbook; pg. 51]
Total Water Surface Width, W1	84		= Total Top Width - (2 * Upland Side Slope * Freeboard Depth)
Total Water Surface Length, L1	214		= Total Top Length - (2 * Upland Side Slope * Freeboard Depth)
Total Water Surface Area, B1	17976		= W1*L1
Total Water Surface Area	0.41	acres	
Water Surface Elevation	26.0	ft	= Top Elevation - Freeboard Depth
At Berm	20.0		
		-1	maximum 5:1 /LIDA Handbook; pg. 51]
Wet Side Slope, Z3		:1	
Berm Width	12	π	per requirements????
Water Depth Above Berm, h1	1	tt	per requirements????
Width (approx), W2	74	ft	= W1 - (2 * Z3 * h1)
ength (approx), L2	204		= L1 - (2 * Z3 * h1)
Surface Area, B2	15096		=L1*W1
Berm Elevation	25		= Top Elevation - Freeboard Depth
	23		top Extration + recording Depty
Overall			
Volume of Water Above the Berm, V1	16515	cu-tt	frustum volume = (h/3) * (B1 + B2 + vB2*B1) [ODOT Hydraulics Manual; Equation 12-16]
Amended Soils Depth	1	ft	12 inch minimum [LIDA Handbook; pg. 53]
Forebay Design			
Ideal Forebay Volume	5055	cu-ft	20% of WQV [Low Impact Development Approaches (LIDA) Handbook; pg. 51]
Actual Forebay Volume, VF		cu-ft	= V2 + % of V1 as determine by (L2f + 1/2 of berm width) / L2; Should meet or exceed Ideal Forebay Volume
Calculated Volume, V2		cu-ft	frustum volume = (h2/3) * (B2f + B3f + vB2fB3f); does not include volume above the berm [ODOT Hydraulics Manual; Equation 12-16]
	3120	CU-IL	industum volume = (n2/3) [b21 + b31 + Vb2(b31); does not include volume above the berm (DDD) Hydraulics manual; Equation 12-16]
At Water Surface			
Forebay Water Surface Width, W1f	84	ft	= W1
Forebay Water Surface Length, L1f	40	ft	=Whatever makes L3f min of 4 ft OR {= 0.1 * L1}; Use goal seek to determine by setting L3f to 4; Adjust to obtain desired relative volumes
Forebay Water Surface Area, B1f	1798	sq-ft	10% of Total Surface Area [LIDA Handbook; pg. 51]
At Berm			
Width (approx), W2f	74	0	= W2
	29		= L2 - (Z1 * h1) - (0.5 * Berm Width)
Length (approx), L2f			
Surface Area at Berm, B2f	2146	sq-ii	= W2f*L2f
Pond Bottom			
Depth Below Berm, h2		ft	
Forebay Side Slope, Z2	4	:1	H:V
Berm Side Slope, Zbf		:1	HV
Elevation	22		= Berm Elevation - h2
Width (approx), W3f	50		= W2 - (2 * Z3 * h2)
Length (approx), L3f	50		= U2f - (Z3 * h2) - (Z2f * h2); Min 4 ft; Use Goal Seek to determine by changing L1f
			= L21 - (23 m2) - (221 m2); min 4 it; Use Goal Seek to determine by changing L11 = W3f*L3f
Bottom Area, B3f	250	sq-ft	
Permenant Pool Design			
Calculated Volume, V3	8435	cu-ft	V3 = 2Va + Vb + Vc + 2Vd (see notes)
At Water Surface		ft	= W1
At Water Surface Pool Water Surface Width, W1p	84		= W1 = L1 - L1f OR {= 0.9 * L1}
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p			= W1 = L1 - L1f OR (= 0.9 * L1)
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm	84 174	ft	= L1 - L1f OR {= 0.9 * L1}
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p	84 174 74	ft	= L1 - L1f OR (= 0.9 * L1) = W2
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p ength (approx), L2p	84 174 74 163	ft ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - (Z1 * h1) - (0.5 * Berm Width)
N Water Surface voo Water Surface Width, W1p ooo Water Surface Length, L1p N Berm Weth (approx), V2p Length (approx), L2p Durface Area at Berm, B2p	84 174 74	ft ft	= L1 - L1f OR (= 0.9 * L1) = W2
N Water Surface Peod Water Surface Width, W1p Peod Water Surface Length, L1p At Berm Width (approx), W2n ength (approx), L2p Surface Area at Berm, B2p Oral Bottom	84 174 74 163	ft ft	= L1 - L1f OR {= 0.9*L1} = W2 = L1p - (Z1*h1) - (0.5*Berm Width) = W2p*L2p
N Water Surface Pool Water Surface Length, L1p N Berm Vidht (approx), W2p angth (approx), L2p Jurface Area at Berm, B2p ond Bottom	84 174 74 163 12062	ft ft ft sq-ft	= L1 - L1f OR {= 0.9*L1} = W2 = L1p - (Z1*h1) - (0.5*Berm Width) = W2p*L2p
N Water Surface Water Surface Width, W1p wood Water Surface Length, L1p N Berm Width (approx), W2p ength (approx), L2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3	84 174 74 163	ft ft ft sq-ft	= L1 - L1f OR {= 0.9 * L1} = W2 = L1p - (Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 2.5 ft [/LDA Handbook: pg. 52]
Al Water Surface Vero Water Surface Width, W1p Vero Water Surface Length, L1p Al Berm Weth (approx), V2p, Length (approx), L2p Surface Area at Berm, B2p, Vero Bottom Max Depth Below Berm, h3 Ool Side Stope, Z3	84 174 174 163 12062 12062	ft ft sq-ft ft :1	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - (Z1 * h1) - (0.5 * Bern Width) = W2p * L2p = W2p * L2p = maximum 2.5 ft [/LDA Handbook: pg. 5.2] maximum 5:1 [/LDA Handbook: pg. 5.1]
Al Water Surface Pool Water Surface Length, L1p At Berm Midth (approx), W2p ergth, (approx), K2p Surface Area at Berm, B2p Pool Bottom Max Depth Below Berm, h3 Pool Sole Sope, Z3 Erm Side Slope, Z5p	1 84 174 174 163 12062 1.5 5 5	ft ft sq-ft ft :1 :1	= L1 - L1f OR {= 0.9 * L1} = W2 = L1p - (21 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 2.5 ft (LIDA Handbook: pg. 52) maximum 5:1 (LIDA Handbook: pg. 51) HV
Water Surface Nool Water Surface Width, W1p Sool Water Surface Length, L1p Ndth Epprox), W2p ength (approx), U2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3 Pol Slope, Z3 Berm Side Slope, Z4p	84 174 163 12062 1.5 5 5 2.5 2.5 2.3.5	ft ft sq-ft ft :1 ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - (Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 2.5 ft (LIDA Handbook: pg. 52) maximum 5.1 (LIDA Handbook: pg. 51) H:V = Berm Elevation - h3
N Water Surface Veron Vieter Surface Width, W1p Veron Vieter Surface Length, L1p At Berm Veth (approx), I2p Length (approx), I2p Oral Bottom Max Depth Below Berm, h3 Oral Soltom Oral Soltom Stope, Z3 Serm Side Stope, Z5p Levation Wath (approx), W3p	1 84 174 174 163 12062 1.5 5 5 5 2.3.5 5 9 9	ft ft sq-ft :1 :1 ft ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - [Z1 * h1] - (0.5 * Bern Width) = W2p * L2p maximum 2.5 ft [<i>LIDA Handbook: pg. 52</i>] maximum 5.1 [<i>LIDA Handbook: pg. 51</i>] H:V = Bern Elevation - h3 = W2p - [2 * 23 * h3]
At Water Surface Prod Water Surface Width, W1p Prod Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p, Prond Bottom Vaka Depth Below Berm, h3 Proof Sides Sippe, Z3 Berm Side Sippe, Z3 Berm Side Sippe, Z4 Bern Side S	84 174 163 12062 1.5 5 5 59 148	ft ft sq-ft ft :1 ft ft ft ft	= L1 - L1f OR {= 0.9 * L1} = W2 = L1p - (Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum S1 (LIDA Handbook; pg. 52) maximum S1 (LIDA Handbook; pg. 52) HV = Berm Elevation - h3 = W2p - (2 * Z3 * h3) = =================================
At Water Surface Prod Water Surface Width, W1p Prod Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p, Prond Bottom Vaka Depth Below Berm, h3 Proof Sides Sippe, Z3 Berm Side Sippe, Z3 Berm Side Sippe, Z4 Bern Side S	1 84 174 174 163 12062 1.5 5 5 5 2.3.5 5 9 9	ft ft sq-ft ft :1 ft ft ft ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - [Z1 * h1] - (0.5 * Bern Width) = W2p * L2p maximum 2.5 ft [<i>LIDA Handbook: pg. 52</i>] maximum 5.1 [<i>LIDA Handbook: pg. 51</i>] H:V = Bern Elevation - h3 = W2p - [2 * 23 * h3]
Water Surface Cool Water Surface Width, W1p Cool Water Surface Length, L1p Weth Reprox), W2p Length, L2p Weth Reprox), W2p Length, Reprox), L2p Cool Water Surface Area at Berm, B2p Pond Bottom Max Depth Below Berm, h3 Cool Slope, 23 Serm Side Slope, 23 Serm Side Slope, Z5p Levation Width Reprox), W3p Length (approx), L3p Stotm Area, B3	84 174 163 12062 1.5 5 23.5 99 148 6872 6872	ft ft sq-ft ft ft ft ft ft ft ft ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - [21 * h1] - (0.5 * Bern Width) = W2p * L2p maximum 2.5 ft [/LDA Handbook: pg. 52] maximum 5:1 [/LDA Handbook: pg. 52] maximum 5:1 [/LDA Handbook: pg. 51] HV = Bern Elevation - h3 = Bern Elevation - h3 = W2p (- 2 * h3) = (2 b p
Wafer Surface Varface Surface Varface Length, L1p Varface Length, L2p Varface Area at Berm, B2p Varface Area at Berm, B2p Varface Area at Berm, B3 Varface Area at Berm, B3 Varface Area at B3 Varface Area at B3 Varface Area at B3 Varface Area at B3 Varface Area Area B3 Varface Area Area Area Area Area Area Area Are	84 174 174 163 12062 15 5 5 6 9 8732 8732 ated assuming a sloped bottom	ft ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - (Z1 * h1) - (0.5 * Bern Width) = W2p * L2p maximum 5.1 (<i>ILDA Handbook: pg. 52</i>] maximum 5.1 (<i>ILDA Handbook: pg. 52</i>] H:V = Bern Elevation - h3 = W2p - (2 * 23 * h3) - (Zbp * h3) = U2p - (Z3 * h3) - (Zbp * h3) = W3p * L3p bern L5p to the pool bottom). The volume was modeled and calculated by slicing the pool into 6 simpler shapes. The volumes for
Wafer Surface Varface Surface Varface Length, L1p Varface Length, L2p Varface Area at Berm, B2p Varface Area at Berm, B2p Varface Area at Berm, B3 Varface Area at Berm, B3 Varface Area at B3 Varface Area at B3 Varface Area at B3 Varface Area at B3 Varface Area Area B3 Varface Area Area Area Area Area Area Area Are	64 174 174 163 12062 1.5 5 5 5 63 99 148 8732 148 4eternine overall volume. This	ft ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	= L1 - L1f OR {= 0.9 * L1} = W2 = L1p - [21 * h1] - (0.5 * Bern Width) = W2p * L2p maximum 2.5 ft [LIDA Handbook: pg. 52] maximum 5:1 [LIDA Handbook: pg. 52] maximum 5:1 [LIDA Handbook: pg. 52] maximum 5:1 [LIDA Handbook: pg. 53] = W2p - (2 * 2 * h3) = U2p - (23 * h3) - (2bp * h3) = U2p - (23 * h3) - (2bp * h3) = W3p * U3p = berm top to the pool bottom). The volume was modeled and calculated by slicing the pool into 6 simpler shapes. The volumes for mption. Actual pool volume will depend on contours and pooling areas within the main pool.
Wafer Surface Varface Surface Varface Length, L1p Varface Length, L2p Varface Area at Berm, B2p Varface Area at Berm, B2p Varface Area at Berm, B3 Varface Area at Berm, B3 Varface Area at B3 Varface Area at B3 Varface Area at B3 Varface Area at B3 Varface Area Area B3 Varface Area Area Area Area Area Area Area Are	84 174 174 163 12062 15 5 5 6 9 8732 8732 ated assuming a sloped bottom	ft ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	= L1 - L1f OR {= 0.9 * L1} = W2 = L1 - L1f OR {= 0.9 * L1} = W2 = L1 - L1f OR {= 0.9 * L1} = W2 = L2 * L1 - L1 = L2 * L1 - L1 - L1 + L2 * L2
Al Water Surface Al Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), W2p Surface Area at Berm, B2p Pool Bottom Max Depth Below Berm, h3 Pool Side Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Z5 Elevation Width (approx), U3p Bottom Area, B3 Volumes - Permenant Pool volumes were calcula	64 174 174 163 12062 1.5 5 5 5 63 99 148 8732 148 4eternine overall volume. This	ft ft sq-ft ft ft ft ft ft ft ft ft ft ft ft ft f	= L1 - L1f OR {= 0.9 * L1} = W2 = L1p - [21 * h1] - (0.5 * Bern Width) = W2p * L2p maximum 2.5 ft [LIDA Handbook: pg. 52] maximum 5:1 [LIDA Handbook: pg. 52] maximum 5:1 [LIDA Handbook: pg. 52] maximum 5:1 [LIDA Handbook: pg. 53] = W2p - (2 * 2 * h3) = U2p - (23 * h3) - (2bp * h3) = U2p - (23 * h3) - (2bp * h3) = W3p * U3p = berm top to the pool bottom). The volume was modeled and calculated by slicing the pool into 6 simpler shapes. The volumes for mption. Actual pool volume will depend on contours and pooling areas within the main pool.
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), U2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3 Pool Side Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Z4 Elevation Width (approx), W3p Length (approx), L3p Bottom Area, B3 Volumes - Permenant Pool volumes were calculated and combined to o Va	84 174 174 163 12062 15 5 5 5 681 6881	ft ft sq-ft ft :1 :1 ft ft ft sq-ft (from the is an assu cu-ft cu-ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - [Z1 * h1] - (0.5 * Bern Width) = W2p * L2p maximum 5.1 (<i>JLDA Handbook: pg. 52</i>] maximum 5.1 (<i>JLDA Handbook: pg. 51</i>] HV = Bern Elevation - h3 = W2p - (2 * Z3 * h3) = U2p - (2 * Z3 * h3) = V3p * U3p = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p + Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p + Z3 * h3) *
Al Water Surface Al Water Surface Pool Viater Surface Width, W1p Pool Viater Surface Length, L1p At Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p Pool Boitom Max Depth Below Berm, h3 Pool Side Slope, Z3 Berm Side Slope, Z9 Elevation Width (approx), W3p Length (approx), L3p Bottom Area, B3 Volumes - Permenant Pool volumes were calculated those shapes were calculated and combined to o Va Vb	64 174 174 163 12062 1.5 5 5 6732 44 6801 6801 332 332	ft ft sq-ft ft :1 :1 ft ft ft sq-ft cu-ft cu-ft cu-ft cu-ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - [Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 2.5 ft [<i>LIDA Handbook: pg. 52</i>] maximum 51: [<i>LIDA Handbook: pg. 51</i>] H:V = Berm Elevation - h3 = W2p - (2* 2* h3) = (2p - (2* h3) - (2bp * h3) = (2p - (2* h3) - (2bp * h3) = W3p + (10) + (2p - 2* h3) + (W2p - 2* h3) = W3p + (10) + (2p - 2* h3) + (W2p - 2* h3) = W3p + (10) + (2p - 2* h3) + (10) + (2p - 2* h3) + (10) + (2p - 2* h3) + (2p - 2*
At Water Surface Pool Water Surface Width, W1p Pool Water Surface Length, L1p At Berm Width (approx), W2p Length (approx), U2p Surface Area at Berm, B2p, Pond Bottom Max Depth Below Berm, h3 Pool Side Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Z4 Elevation Width (approx), W3p Length (approx), L3p Bottom Area, B3 Volumes - Permenant Pool volumes were calculated and combined to o Va	84 174 174 163 12062 15 5 5 5 681 6881	ft ft sq-ft ft :1 :1 ft ft ft sq-ft cu-ft cu-ft cu-ft cu-ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - [Z1 * h1] - (0.5 * Bern Width) = W2p * L2p maximum 5.1 (<i>JLDA Handbook: pg. 52</i>] maximum 5.1 (<i>JLDA Handbook: pg. 51</i>] HV = Bern Elevation - h3 = W2p - (2 * Z3 * h3) = U2p - (2 * Z3 * h3) = V3p * U3p = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p + Z3 * h3) * (V2p - Z3 * h3) = V2p + (2 * Z3 * h3) * (V2p + Z3 * h3) *
Al Water Surface Al Water Surface With W1p Oool Water Surface Length, L1p At Berm With (approx), W2p ength (approx), W2p ond Bottom Max Depth Below Berm, h3 Ood Side Slope, Z3 Berm Side Slope, Z3 Berm Side Slope, Z9 Elevation With (approx), U3p Softom Area, B3 Ovlimes - Permenant Pool volumes were calculated hose shapes were calculated and combined to or Vab.	64 174 174 163 12062 1.5 5 5 6732 44 6801 6801 332 332	ft ft sq-ft ft :1 :1 ft ft ft sq-ft cu-ft cu-ft cu-ft cu-ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - [Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 2.5 ft [<i>LIDA Handbook: pg. 52</i>] maximum 51: [<i>LIDA Handbook: pg. 51</i>] H:V = Berm Elevation - h3 = W2p - (2* 2* h3) = (2p - (2* h3) - (2bp * h3) = (2p - (2* h3) - (2bp * h3) = W3p + (10) + (2p - 2* h3) + (W2p - 2* h3) = W3p + (10) + (2p - 2* h3) + (W2p - 2* h3) = W3p + (10) + (2p - 2* h3) + (10) + (2p - 2* h3) + (10) + (2p - 2* h3) + (2p - 2*
Wafer Surface With Surface With Surface Length, L1p Vieth Surface Length, L1p Vieth (approx), W2p ength (approx), W2p unique Area at Berm, B2p Vieth Sologe, Zp Vieth Sologe, Zp Vieth Sologe, Zp Vieth (approx), V3p ength (approx), V3p dem Side Slope, Zp Vieth (approx), V3p vieth (a	64 174 174 163 12062 1.5 5 5 6732 44 6801 6801 332 332	ft ft sq-ft ft :1 :1 ft ft ft sq-ft cu-ft cu-ft cu-ft cu-ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - [Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 2.5 ft [<i>LIDA Handbook: pg. 52</i>] maximum 51: [<i>LIDA Handbook: pg. 51</i>] H:V = Berm Elevation - h3 = W2p - (2* 2* h3) = (2p - (2* h3) - (2bp * h3) = (2p - (2* h3) - (2bp * h3) = W3p + (10) + (2p - 2* h3) + (W2p - 2* h3) = W3p + (10) + (2p - 2* h3) + (W2p - 2* h3) = W3p + (10) + (2p - 2* h3) + (10) + (2p - 2* h3) + (10) + (2p - 2* h3) + (2p - 2*
Al Water Surface Al Water Surface Pool Viater Surface Width, W1p Pool Viater Surface Length, L1p At Berm Width (approx), W2p Length (approx), L2p Surface Area at Berm, B2p Pool Boitom Max Depth Below Berm, h3 Pool Side Slope, Z3 Berm Side Slope, Z9 Elevation Width (approx), W3p Length (approx), L3p Bottom Area, B3 Volumes - Permenant Pool volumes were calculated those shapes were calculated and combined to o Va Vb	64 174 174 163 12062 1.5 5 5 6732 44 6801 6801 332 332	ft ft sq-ft ft :1 :1 ft ft ft sq-ft cu-ft cu-ft cu-ft cu-ft	= L1 - L1f OR (= 0.9 * L1) = W2 = L1p - [Z1 * h1) - (0.5 * Berm Width) = W2p * L2p maximum 2.5 ft [<i>LIDA Handbook: pg. 52</i>] maximum 51: [<i>LIDA Handbook: pg. 51</i>] H:V = Berm Elevation - h3 = W2p - (2* 2* h3) = (2p - (2* h3) - (2bp * h3) = (2p - (2* h3) - (2bp * h3) = W3p + (10) + (2p - 2* h3) + (W2p - 2* h3) = W3p + (10) + (2p - 2* h3) + (W2p - 2* h3) = W3p + (10) + (2p - 2* h3) + (10) + (2p - 2* h3) + (10) + (2p - 2* h3) + (2p - 2*

Notes: Т

Denotes input required Goal Seek to Determine Values Match equations to Forebay WS Length, L1f, if necessary

DESIGN WORKSHEET FOR BIOFILTRATION SWALE	S

DESIGN WORKSHEET FOR BIOFIL	TRATION SWALES			
	Columbia Biver Creasian	20.0-4	Proported by C. Sourak	
PROJECT: BASIN:	Columbia River Crossing	29-00	Prepared by: C. Sourek	
OUTFALL:	Columbia Slough		Checked by: L.Line	
LOCATION/JURISDICTION:	ODOT			
TREATMENT FACILITY:	Biofiltration Swale(s)			
FACILITY NAME:	CS-H			
Parameter		Units	Comments	
Preliminary teps P from D o em				
Impervious Area A	34,848			
		acre	Delineated in Cad dgn file	
Water Quality Design Storm Depth, P	2.09		2yr-24hr (45.6387° N, 122.6615° W) / OAA Atlas 2 recipitation requency Data Output]	
Runoff Treatment Design Flow Rate, Qwg	0.06	cfs	Cont. Model in MGSFlood; P-1; includes swale surface area	
P _(72%-2yr)	1.50	in	72% of the 2yr-24hr precipitation depth (6month-24hr precip can be used instead) [H M pg. 5-]	
k	3.71		= 2.5*P _(72%-2y) = 0.052 (for off-line bioswales in western WA) [H. M pg 5-]	
		. (.		
Biofiltration Design Flow Rate, Q _{biofil}	0.24		$= k^* Q_{wq}; P-2$	
Longitudinal Slope, s			Recommended 1.5-5.0%; P-3 [H M Table T2]	
	0.015	ft/ft		
Manning "n"	0.35		Assuming surface roughening features, n=0.35; P-4 [H M Table T1]	
	<u> </u>			
Design teps D from D o ember	pg tr			
Design Depth, y	4		Assuming infrequent mowing; D-1 (H M Table T2)	
	0.33			
Treatment Area side slope, z		:1	per WSDOT maintenance request 25Nov08, Trapezoidal channel; D-2	
Cross-Sectional Area, A	1.20	sq ft	= (b + zy)*y; D-4 [H M Table T5]	
Wetted Perimeter, P	5.01	ft	$= b + 2y^{*}(1+z^{2})^{0.5}$ [H M Table T5]	
Hydraulic Radius, R	0.24		= A / P [H M Table T5]	
= (Q _{biofil} *n) / (1.49s ^{0.5})	0.46		Goal Seek to = AR ^{0.67} by changing Q _{wg} ; [H M Equation T1]	
= AR ^{0.67}	0.46		Goal Seek to = (Q _{biol} *n) / (1.49s ^{0.5}) by changing b; D-3, Method 1 [H M Equation T1]	
		a	Solar Section - (Globil II) (1.455) by sharinging b, bo, included i primit Equation 1 1j	
Bottom Width, b	2.3		2-10 ft /H M Table T21	
Actual Bottom Width, b	9.00			
Residence Time, t			For basic biofiltration swales [H M pg 5-]	
Velocity, V _{biofil}	0.20		= Q _{biofII} / A, Max 1.0fps; D-5 [H M Equation T2]	
Swale Length , L	106.9	ft	= V _{biofil} * t * 60(sec/min); D-6	
Actual Swale Length, L	107.0	ft	Min 100ft [H M Table T2]	
Top Width, T	4.93	ft	= B + 2yz [H M Table5]	
Number of Flow Spreaders	0		If b > 6ft recommended flow spreader every 50 ft plus one at inlet [H M pg 5-56]	
Freeboard	<mark>1</mark> .0	-	Min 1.0ft <i>(H M Table T2)</i>	
Total Swale Depth	1.33		Freeboard plus Design Depth, y	
Actual Top Width	13		includes Freeboard	
Actual Top Length	118		includes Freeboard	
Minimum Area Required	1,384			
		acre		
Access Road Width	12.0		[igure T1]	
Total Area Required	2,668		Access Road Width added to Actual Top Width - access road running parallel to swale length	
		acre		
NRCS Hydrologic Soil Group	B			
Underdrain Required	NO		[igure T3]	
Energy Dissipater Required	NO	L	[H M-Design ite Elements pg. 5-56]	
Parallel Swales Required	NO	L	[Table T2; comment 2]	
f parallel s ales are re ire				
Swale Width	n/a			
Swale Length	n/a			
Water Surface Width	n/a			
Water Surface Length	n/a			
Actual Top Width	n/a		both swales and assuming 2ft divider width	
Actual Top Length	n/a			
Total Area Required	n/a	ac		

This page left blank intentionally.

APPENDIX B-3

Inlet Spreadsheets

This page left blank intentionally.

					**			1.30	1.95						T										Ţ	,LIAN
					Vside*																					JR COMF
					Vcontinuous**			1.48	2.48																	MN L) FO
					Vcon		-	0.03	0.12											 						 ь (соги
					Q _{bp**}			O	O																	AND Qb
					ę		-	3.14	4.50																	ntinuous
					Z		-	-	6											 						ECK Vcor
		1			p			0.11	0.09																	**FOR LAST GRATE ON RUN OF GUTTER, IF SPREADSHEET SHOWS A VALUE FOR Vside, CHECK Vside AND Qbp (COLUMN S) FOR COMPLIANCE. OTHERWISE, CHECK Vcontinuous AND Qbp (COLUMN L) FOR COMPLIAN
	5	Vua-11			-		-	0.78	0.78											 						 OTHERV
	CRC	L.Line 18-Aua-11			G.			2	2			Ľ														IANCE.
	at Name at #∴	ned By:	ed:		G.W.		ļ	1.67	1.67																	compl
	Project N: Project #: S.R.:	Desigi Date:	Updated:					35	20						+	_					 	 			_	N S) FOF
					Super T			0.035	0.020																	(cornw
			+shldr es					0.006	0.017				ŀ			_		_				÷			_	 ND Qbp
	10-year 50-year	Shldr+2ft Shldr	1/2 Lane+shldr 0.12 inches		Slope L			0	0																	Vside Al
s))	Ø			0.230	0.428																	, CHECK
H UNIT	m Inlets Low points	e >45mp <45	Local Max d		Σ			0	0																	DR Vside
NGLISI	5.00 Design Storm Inlets 0.90 2.18	4.92 Zd Allowable >45mph & sag 0.506 <45	0.015		ΔQ			0.230	0.400																	
EET (E	5.00 De <mark>0.90</mark> 2.18	4.92 Zd	Vidth 0.0		_		1	0.1178	0.2040									_		 	 	 				V A SWC
EADSH			Shldr Width		Area			O	O																	IEET SHO
R SPRE			=p)		Shldr Width			4.00	4.00																	READSH
UTTEF	C = = =		Allowable Zd= Mannings n	5	Shldr															 						ir, if Sp
AND G		= =u	Ψ		lce		1	142.14	36.22											 					_	 : GUTTE
CURB	vater Fac	of VC I/C			Distance																					RUN OF
INLET SPACING - CURB AND GUTTER SPREADSHEET (ENGLISH UNITS)	Areas Draining to Stormwater Facility: CS-C	(Located at NE quadrant of VC I/C)			Rim Elev		37.97	37.13	33.01	_							Ī		_						Ţ	 SATE ON
I SPAC	Draining t	d at NE o				N	16.35	14.21	37.99						+	+				 						 LAST GF
INLE	Areas I CS-C	(Locaté		CS-C	Station	De-5N	101+46.35	100+04.21	97+(**FOR

PLEASE REPORT ANY PROBLEMS TO WSDOT HQ HYDRAULICS OFFICE. SPREADSHEET IS PROTECTED BUT DOES NOT REQUIRE A PASSWORD TO UNPROTECT.

C:\Documents and Settings\sourekc\Desktop\For Barb\Volume II\Appendix B - Calculations and Program Output\B-3 Inlet Spreadsheets\CS-C_InletSpacing.xls

Comments (L/R)																	
Q _{bp} Check		Qbp < 0.1 CFS	NEED TO REDUCE Obp														
Velocity Check		VELOCITY < 5 FT/SEC	VELOCITY < 5 FT/SEC														
Z _d Check		Zd ALLOWABLE > Zd DESIGN	NEED TO DECREASE Zd														
Q _{bp**}		0.03	0.12														
a		0.20	0.31														
ш		0.88															
۳		0.08															
யீ		0.87	0.71														CE.

C:\Documents and Settings\sourekc\Desktop\For Barb\Volume II\Appendix B - Calculations and Program Output\B-3 Inlet Spreadsheets\CS-C_InletSpacing.xls

INLET SP	CING - C	URB AND) GUI	ITER SPR	(EADSHEE)	INLET SPACING - CURB AND GUTTER SPREADSHEET (ENGLISH UNITS)	UNITS)									
Areas Draining to Stormwater Facility: CS-C	g to Stormwa		Ц С Ц Ц Ц Ц Ц		5.00 0.90 2.18	5.00 Design Storm Inlets 0.90 2.18	lnlets Low points	10-year 50-year		Project Name: Project #: S.R.:	CRC 5					
(Located at NE quadrant of VC I/C)	E quadrant o		m= Allowa	m= n= Allowable Zd=	4.92 0.506 Shldr Width	Zd Allowable		Shldr+2ft Shldr 1/2 Lane+shldr		:. M	L.Line 18-Aug-11					
CS-C			Mann	Mannings n		0.015	Max d @ Trvl	0.12 inches								
Station	Rim Elev	Distance		Shldr Width	Area	ΔQ	Σα	Slope L	Super T	G.W.	G.L.	p	Zd	Q _{bp**}	Vcontinuous**	Vside**
5N-MDw																
113+67.78	59.23															
113+14.52	57.47	53.26		8.00							0.78	0.05	2.50	0.01	2.21	
113+14.52	56.32	58.00		4.00							0.78	0.10	5.00	0.21	2.98	2.23
111+02.66	48.83	211.86		4.00							0.78	0.03	60.00	0.57	0.91	0.86
111+02.66	48.83	32.50		8.00			0.572					0.02	50.00	0.52	1.51	
109+02.66	41.24	200.00		8.00						1.67		0.10	5.00	0.28	3.91	
106+17.11	36.40	285.55		8.00				1			1	0.11	5.50	0.25	2.58	2.20
105+17.06	35.54	100.05		8.00							0.78	0.15	3.75	0.12	2.33	1.92
102+99.76	34.73	217.30		8.00	0.1469	39 0.290		0.004	0.040		1.78	0.18	4.50	0.01	1.41	1.43
97+71.26	37.40															
99+62.84	35.65	191.58		8.00	0.1207		0.27				0.78	0.08	4.00	0.06	1.73	1.30
102+99.76	34.73	336.92		8.00	0.2279	9 0.450	0.504	1 0.003	0.040	1.67	0.78	0.18	4.50	0.15	1.46	1.23
				_												
			1													
**FOR LAST	3RATE ON F	RUN OF GUT	ITER,	IF SPREADS	SHEET SHOW:	S A VALUE FOF	R Vside, CHECI	K Vside AND G	3 NMULOD) qdf	**FOR LAST GRATE ON RUN OF GUTTER, IF SPREADSHEET SHOWS A VALUE FOR Vside, CHECK Vside AND Qbp (COLUMN S) FOR COMPLIANCE. OTHERWISE, CHECK Vcontinuous AND Qbp (COLUMN L) FOR COMPLIAN	ANCE. OTHER	RWISE, CHEC	K Vcontinuou	s AND Qbp (C	OLUMN L) FOF	COMPLIAN

PLEASE REPORT ANY PROBLEMS TO WSDOT HQ HYDRAULICS OFFICE. SPREADSHEET IS PROTECTED BUT DOES NOT REQUIRE A PASSWORD TO UNPROTECT.

C:/Documents and Settings/sourekc/Desktop/For Barb/Volume II/Appendix B - Calculations and Program Output/B-3 Inlet Spreadsheets/CS-C_InletSpacing.xls

¢
0

Comments (L/R)																				
Q _{bp} Check										Qbp < 0.1 CFS	NEED TO REDUCE Qbp									
Velocity Check		VELOCITY < 5 FT/SEC	VELOCITY < 5 FT/SEC	VELOCITY < 5 FT/SEC	VELOCITY < 5 FT/SEC	VELOCITY < 5 FT/SEC	VELOCITY < 5 FT/SEC	VELOCITY < 5 FT/SEC	VELOCITY < 5 FT/SEC	 VELOCITY < 5 FT/SEC	VELOCITY < 5 FT/SEC									
Z _d Check		Zd ALLOWABLE > Zd DESIGN	NEED TO DECREASE Zd	NEED TO DECREASE Zd	NEED TO DECREASE Zd	Zd ALLOWABLE > Zd DESIGN	 Zd ALLOWABLE > Zd DESIGN	Zd ALLOWABLE > Zd DESIGN												
$\mathbf{Q}_{bp^{**}}$			0.21	0.57			0.24	0.11	0.01	0.05	0.13									
ă			0.42	0.05			0.41	0.46	0.54	0.19	0.37	 								
ш			0.67	0.07			0.63	0.80	0.98	0.77	0.74									
R			0.02	00.00			0.02	0.04	0.34	0.04	0.09							<u> </u>	<u> </u>	
щ			0.66	0.07			0.62	0.79	0.97	0.76	0.71									CE.

C:\Documents and Settings\sourekc\Desktop\For Barb\Volume II\Appendix B - Calculations and Program Output\B-3 Inlet Spreadsheets\CS-C_InletSpacing.xls