ALASKAN WAY VIADUCT REPLACEMENT PROJECT
Final Environmental Impact Statement and Section 4(f) Evaluation

City of Seattle
ALASKAN WAY VIADUCT REPLACEMENT PROJECT

Final Environmental Impact Statement and Section 4(f) Evaluation

Submitted pursuant to:
The National Environmental Policy Act (NEPA) (42 U.S.C. 4321(2)(C)) and
the State Environmental Policy Act (SEPA) (Ch. 43.21 C. RCW) and Section 4(f) of the Department of Transportation Act, (49 U.S.C. 301(c)) by
the
FEDERAL HIGHWAY ADMINISTRATION
and
WASHINGTON STATE DEPARTMENT OF TRANSPORTATION
and
CITY OF SEATTLE DEPARTMENT OF TRANSPORTATION

Abstract
The existing Alaskan Way Viaduct (SR 99) was built in the 1950s and was damaged in the 2001 Nisqually earthquake. It is seismically vulnerable and at the end of its useful life—it must be replaced. The Federal Highway Administration, Washington State Department of Transportation, and City of Seattle plan to replace the existing facility to provide a structure capable of withstanding earthquakes and to ensure that people and goods can safely and efficiently travel within and through the project corridor. The Alaskan Way Viaduct provides vital transportation connections into and through downtown Seattle, as well as between various other regional destinations. Failure of the viaduct would create severe hardships for the city and region and could possibly cause injury or death.

The 2004 Draft Environmental Impact Statement (EIS) analyzed five Build Alternatives and a No Build Alternative for their potential effects on the human and natural environment. Based on information presented in the Draft EIS, public comments, and further study and design, the lead agencies reduced the number of alternatives from five to two. The two alternatives, the Tunnel (now the Cut-and-Cover Tunnel Alternative) and Elevated Structure, were then evaluated in the 2006 Supplemental Draft EIS document. In 2009, the Governor, former King County Executive, and former Seattle Mayor recommended replacing the central waterfront portion of the Alaskan Way Viaduct with a single bored tunnel. The 2010 Supplemental Draft EIS analyzed the new Bored Tunnel Alternative, provided information about design changes to the 2006 build alternatives still under consideration, and compared 2006 build alternatives to the Bored Tunnel Alternative.

This Final EIS evaluates the No Build Alternative in addition to the Bored Tunnel Alternative, Cut-and-Cover Tunnel Alternative, and Elevated Structure Alternative, each with and without tolls, for their potential effects to the natural and built environments. The lead agencies have identified the Bored Tunnel Alternative with tolls as the preferred alternative. No decision will be made on the proposed action until the Record of Decision is published, which is expected in August 2011. If tolling is not authorized by the Washington State Legislature, it could direct WSDOT to request a revised Record of Decision from Federal Highway Administration to authorize the construction of the Bored Tunnel Alternative as a non-tolled facility.

Daniel M. Mathis, P.E.
Division Administrator, Washington Division
Federal Highway Administration

June 20, 2011

Megan White, P.E.
Director of Environmental Services
Washington State Department of Transportation
Lead for State Environmental Policy Act (SEPA)

June 20, 2011

Peter Haise
Director
Seattle Department of Transportation

June 20, 2011
FACT SHEET

Project Name
SR 99: Alaskan Way Viaduct Replacement Project

Project Description
The SR 99: Alaskan Way Viaduct Replacement Project proposes to replace SR 99 between S. Royal Brougham Way and Roy Street in Seattle, Washington with a facility that has improved earthquake resistance. Damage sustained by the viaduct during the February 2001 Nisqually earthquake compromised its structural integrity. This past damage, along with the age, design, and location of the existing viaduct, makes this facility vulnerable to sudden and catastrophic failure in an earthquake.

SR 99 and Interstate 5 are the primary north-south access routes through downtown Seattle, making the Alaskan Way Viaduct a vital link in the region’s highway and freight mobility system, and thus critical to the region’s economy. Together with the transit system, light rail and local streets, SR 99 serves regional and local needs.

This Final EIS analyzes and compares the effects of the No Build Alternative, and the Bored Tunnel Alternative, Cut-and-Cover Tunnel Alternative, and Elevated Structure Alternative, each with and without tolls. The No Build Alternative is evaluated to provide baseline information. The lead agencies have identified the Bored Tunnel Alternative with tolls as the preferred alternative. If tolling is not authorized by the Washington State Legislature, it could direct WSDOT to request a revised Record of Decision from the Federal Highway Administration to authorize the construction of the Bored Tunnel Alternative as a non-tolled facility.

Joint Lead Agencies
Federal Highway Administration
Washington Division
Evergreen Plaza
711 S. Capitol Way, Suite 501
Olympia, WA 98501 - 1284

Washington State Department of Transportation
Alaskan Way Viaduct Replacement Project Office
Wells Fargo Building
999 Third Avenue, Suite 2424
Seattle, WA 98104 - 4019

City of Seattle Department of Transportation
700 Fifth Avenue, Suite 3900
PO Box 34996
Seattle, WA 98124 - 4996

NEPA Lead Agency
The Federal Highway Administration is the lead agency for NEPA.

Responsible NEPA Official
Daniel M. Mathis, P.E.
Division Administrator, Washington Division
Federal Highway Administration
711 S. Capitol Way, Suite 501
Olympia, WA 98501 - 1284

SEPA Lead Agency
The Washington State Department of Transportation is the nominal lead agency and the City of Seattle is a co-lead agency for SEPA.

Responsible SEPA Official
Megan White, P.E.
Director, Environmental Services Office
Washington State Department of Transportation
PO Box 47351
Olympia, WA 98504 - 7351

Document Availability
The Final EIS is available online at:
http://www.alaskanwayviaduct.org

Printed copies of this Final EIS and related appendices (discipline reports) are available at City of Seattle public libraries and neighborhood service centers (see the Distribution List on page 272). These documents are also available for purchase at:
Alaskan Way Viaduct Replacement Project Office
999 Third Avenue, Reception desk on the 22nd Floor
Seattle, WA 98104 - 0019

CDs and the Executive Summary are available at no charge.
Prices for printed volumes do not exceed the cost of printing and are as follows:
Final EIS (17 x 11 color) $50
Set of Appendices $75
Final EIS and Appendices $125

Contact Information
To obtain a copy of the environmental documents, contact:
Angela Angove
Alaskan Way Viaduct Replacement Project Office
999 Third Avenue, Suite 2424
Seattle, WA 98104 - 4019
Phone: 206-805-2832
Email: AngoveA@wsdot.wa.gov

JULY 2011
Permits, Approvals, and Consultations

Federal
- National Marine Fisheries Service and U.S. Fish and Wildlife Service – Section 7 Endangered Species Act (ESA) Consultation and Marine Mammal Protection Act Consultation
- National Marine Fisheries Service – Magnuson-Stevens Fishery Conservation and Management Act Consultation
- Federal Highway Administration, in consultation with the Washington Department of Archaeology and Historic Preservation – National Historic Preservation Act, Section 106 Consultation
- U.S. Department of Transportation – Section 4(f) Evaluation

State
- Washington State Department of Ecology – Model Toxics Control Act, Removal of Underground Storage Tanks
- Washington State Department of Ecology – National Pollutant Discharge Elimination System (NPDES), Construction Stormwater General Permit
- Washington State Department of Ecology – Coastal Zone Management Act (CZMA), Consistency Certification
- Washington State Department of Ecology – Underground Injection Control Registration
- Washington State Department of Ecology – Notice of Intent for Installing, Modifying, or Removing Peimeters
- Washington State Department of Ecology – Notice of Intent for Installing, Modifying, or Removing Wells
- Washington State Department of Ecology – Chemical Treatment Letter of Approval

Local
- King County – Industrial Waste Program Wastewater Discharge Permit, if required
- Seattle City Light – Clearance Permits
- Seattle Department of Planning and Development – Master Use Permit
- Seattle Department of Planning and Development – Shoreline Substantial Development Permit
- Seattle Department of Planning and Development – Grading Permit
- Seattle Department of Planning and Development – Building Permit
- Seattle Department of Planning and Development – Demolition Permit
- Seattle Department of Planning and Development – Site Sewer Permit
- Seattle Department of Transportation – Street Use Permit
- Seattle Department of Neighborhoods and Pike Place Market Historic District Commission – Pike Place Market Historic District Certificate of Approval
- Seattle Department of Planning and Development – Major Public Project Construction Variance/Temporary Noise Variance
- Seattle Department of Planning and Development – Removal or Abandonment of Underground Storage Tanks

Other Permits/Approvals
- Sign Permit
- Elevator Permit
- Fire Alarm Permit

Other Permits/Approvals
- Puget Sound Clean Air Agency – Clean Air Act, Air-Quality Conformity Review
- Puget Sound Clean Air Agency – Notice of Intent for Demolition Activities and Notice of Construction for Constructing a Concrete Batch Plant

Authors and Principal Contributors
Please see the List of Preparers included at the end of the Final EIS.

Date Issued
July 15, 2011

Subsequent Environmental Review
FHWA intends to issue the Record of Decision (ROD) for this project 30 days after publication of a Federal Register notice announcing that the Final EIS has been issued, or as soon after that date as practicable. The Federal Register notice is expected to be published on July 15, when published, it will be posted on the project website at www.alaskanwayviaduct.org. While the lead agencies are not required to request comments on a Final EIS pursuant to 40 CFR 1503.1(b), in order to be fully informed of the interests of all parties, the lead agencies are accepting comments on the Final EIS. If any substantive comments are received prior to the signing of the ROD, FHWA will include responses to those comments in the ROD. Comments must be received by no later than 5:00 pm on Monday, August 15, 2011 for consideration in the ROD. Comments may be submitted by mail to: Angela Angove Alaskan Way Viaduct Replacement Project Office 999 Third Avenue, Suite 2424 Seattle, WA 98104 - 2019 or via email at: awv2011FEIScomments@wsdot.wa.gov

1. The City and WSDOT may be exempt from certain permits under some conditions. Even though this grading work may be exempt, the City would still perform a project review to ensure that the project meets City requirements for grading activities.
CONTENTS

Cover Sheet i
Fact Sheet ii
In Memoriam xii

CHAPTERS

SUMMARY

What is in the Summary? 1
1 What is the Alaskan Way Viaduct Replacement Project? 1
2 What are the project limits and why were they selected? 1
3 Who is leading this project? 1
4 What is the purpose of the Alaskan Way Viaduct Replacement Project and why is it needed? 1
5 What is the history of this project? 2
6 What is the Preferred Alternative? 3
7 What other alternatives are considered in this Final EIS? 4
8 How does the project relate to the Alaskan Way Viaduct and Seawall Replacement Program? 4
9 How would the Bored Tunnel Alternative replace the existing viaduct? 4
10 How would the Cut-and-Cover Tunnel Alternative replace the existing viaduct? 6
11 How would the Elevated Structure Alternative replace the existing viaduct? 7
12 How much would the project cost? 8
13 How would SR 99 access compare? 8
14 Would regional traffic patterns change? 10
15 How would SR 99 volumes change? 10
16 Would conditions on I-5 change? 10
17 Would conditions on area streets change? 11
18 How would travel times change? 12
19 How would conditions for transit compare? 17
1 Other Permanent Effects
20 Would noise levels permanently change? 18
21 Would views permanently change? 18
22 Would properties or land uses be permanently affected? 18
23 Would the economy be permanently affected? 19
24 Would historic resources be permanently affected? 19
25 What other permanent effects would the alternatives have? 20
26 What permanent adverse effects of the project would not be mitigated? 22
4 Temporary Construction Effects
27 How would the alternatives be constructed? 23
28 How would restrictions to SR 99 compare? 23
29 How would traffic be restricted on other roadways during construction? 23
30 How would travel patterns on SR 99, I-5, and city streets be affected during construction? 26
31 How would SR 99 traffic be affected by restrictions and detours? 26
32 How would construction affect I-5? 27
33 How would traffic on local streets be affected by lane restrictions? 27
34 How would area noise levels change during construction? 28
35 How would the economy be affected during construction? 28
36 How would historic resources be affected during construction? 29
37 How would archaeological resources be affected during construction? 29
38 What other effects would there be during construction? 30
Mitigation for Temporary Construction Effects
39 How would construction effects be mitigated? 33
40 What temporary construction effects would not be mitigated? 33
41 How would the project, the Alaskan Way Viaduct and Seawall Replacement Program, and other downtown projects affect Seattle and surrounding areas? 33
42 What opportunities have we provided for people, agencies, and tribes to be engaged in the project? 34
43 What comments were made on the 2010 Supplemental Draft EIS? 34
44 What issues are controversial? 35
45 What issues need to be resolved? 36
CONTENTS (continued)

1 INTRODUCTION
What is in Chapter 1?
1 What is the Alaskan Way Viaduct Replacement Project? 39
2 What are the project limits and why were they selected? 39
3 Who is leading this project? 39
4 Why are the lead agencies preparing this Final EIS? 39
5 What is the purpose of the Alaskan Way Viaduct Replacement Project and why is it needed? 39

2 ALTERNATIVES DEVELOPMENT
What is in Chapter 2?
1 What is the history of this project? 45
2 What alternatives were evaluated in the 2004 Draft EIS? 45
3 Why were the 2004 Draft EIS alternatives narrowed from five to two? 47
4 What alternatives were evaluated in the 2006 Supplemental Draft EIS? 47
5 What’s happened after the 2006 Supplemental Draft EIS was published? 49
6 What happened after the bored tunnel was recommended? 51
7 What happened after the 2010 Supplemental Draft EIS was published? 54
8 How has the City of Seattle been involved in the project? 57
9 How does the project relate to the Alaskan Way Viaduct and Seawall Replacement Program? 58
10 What other projects are included in the Program? 58

Public Involvement
11 What opportunities have we provided for people to be engaged in the project? 61
12 How have we been engaging businesses and residents located adjacent to the project? 61
13 How have we been engaging minorities, low-income people, and social service providers? 62
14 How have we been coordinating with agencies? 62
15 How have we been coordinating with tribes? 65

3 ALTERNATIVES DESCRIPTION
What is in Chapter 3?
Alternatives
1 What alternatives are evaluated in this Final EIS? 65
2 What is the Preferred Alternative? 65
3 What is the Viaduct Closed (No Build Alternative)? 65
4 How would the Bored Tunnel Alternative replace SR 99 and the viaduct? 66
5 How would the Cut-and-Cover Tunnel Alternative replace SR 99 and the viaduct? 68
6 How would the Elevated Structure Alternative replace SR 99 and the viaduct? 70

Construction
7 What must happen before construction can begin? 71
8 What construction shifts are proposed? 71
9 Where would construction staging occur? 72
10 What construction haul routes are proposed? 73
11 What construction equipment and activities are common to the alternatives? 73
12 How would construction of the S. Holgate Street to S. King Street Viaduct Replacement Project relate to this project? 75
13 How would the Bored Tunnel Alternative be constructed? 75
14 How would the Cut-and-Cover Tunnel Alternative be constructed? 80
15 How would the Elevated Structure Alternative be constructed? 82

4 THE PROJECT AREA
What is in Chapter 4?
1 Where is the Alaskan Way Viaduct Replacement Project located? 85
2 What elements of Seattle’s history have shaped the project area? 85
3 What is the viaduct’s condition today? 87
4 What are key features of Seattle’s downtown roadway network? 88
5 How are existing conditions evaluated in this EIS? 89
6 How much traffic is estimated to travel on SR 99, in Seattle, and in the region each day? 90
7 Where are the people using the viaduct coming from and going to? 90
8 What are typical travel conditions on SR 99? 91
9 How well do local streets and intersections operate? 92
10 What are the existing conditions for specific types of users? 93
11 How many parking spaces exist in the project area? 96
12 How many jobs are in the project area? 96
13 How is the project area affected by vibration from traffic traveling on the viaduct? 97
14 What visual features are located in the project area? 98
15 What are some of the positive and negative visual conditions created by the viaduct? 99
16 What is the character of and land use in the project area? 99
17 What is the regional and local economy like now? 99
18 What historic and archaeological resources are located in the project area? 101
19 What parks and recreational facilities are located in the project area? 101
20 Who lives in the neighborhoods located in the project area? 101
21 What community and social services serve these neighborhoods? 103
22 What public services and utilities are located in the project area? 103
23 Is air quality a concern in the project area? 104
24 Are greenhouse gas emissions a concern in the region? 105
25 How much energy does transportation in the region use? 105
26 What are water quality conditions in the Duwamish River, Elliott Bay, and Lake Union? 105
27 How is stormwater currently managed in the project area? 106
28 What fish and wildlife species live in or near the project area? 106
29 What are the groundwater conditions in the project area? 107
30 Are there any potentially contaminated sites in the project area? 108
5 PERMANENT EFFECTS

Transportation

<table>
<thead>
<tr>
<th>Page</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>What conditions were modeled for the traffic analysis?</td>
</tr>
<tr>
<td>3</td>
<td>How do the SR 99 lane configuration and access points compare among the alternatives?</td>
</tr>
<tr>
<td>4</td>
<td>How would regional travel patterns compare?</td>
</tr>
<tr>
<td>5</td>
<td>How would vehicle volumes and person throughput compare?</td>
</tr>
<tr>
<td>6</td>
<td>How would SR 99 mainline and ramp volumes compare?</td>
</tr>
<tr>
<td>7</td>
<td>How would traffic conditions on I-5 compare?</td>
</tr>
<tr>
<td>8</td>
<td>How would traffic conditions on area streets compare?</td>
</tr>
<tr>
<td>9</td>
<td>How would conditions compare on city streets south of S. King Street?</td>
</tr>
<tr>
<td>10</td>
<td>How would conditions compare for Alaskan Way and streets north of S. King Street?</td>
</tr>
<tr>
<td>11</td>
<td>How would conditions compare for streets from Denny Way north?</td>
</tr>
<tr>
<td>12</td>
<td>How would SR 99 travel speeds compare?</td>
</tr>
<tr>
<td>13</td>
<td>How would SR 99 travel times compare?</td>
</tr>
<tr>
<td>14</td>
<td>How would conditions for transit compare?</td>
</tr>
<tr>
<td>15</td>
<td>How would access change for drivers, bicyclists, and pedestrians?</td>
</tr>
</tbody>
</table>

Other Permanent Effects

<table>
<thead>
<tr>
<th>Page</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>How would noise levels compare?</td>
</tr>
<tr>
<td>17</td>
<td>How would views change for the alternatives?</td>
</tr>
<tr>
<td>18</td>
<td>What properties would need to be acquired?</td>
</tr>
<tr>
<td>19</td>
<td>How would land use effects compare?</td>
</tr>
<tr>
<td>20</td>
<td>How would local and regional economic effects compare?</td>
</tr>
<tr>
<td>21</td>
<td>How would effects to historic resources compare?</td>
</tr>
<tr>
<td>22</td>
<td>How would effects to archaeological resources compare?</td>
</tr>
<tr>
<td>23</td>
<td>How would effects to parks, recreation, and open space compare?</td>
</tr>
<tr>
<td>24</td>
<td>How would effects to neighborhoods compare?</td>
</tr>
<tr>
<td>25</td>
<td>How would effects to community and social services compare?</td>
</tr>
</tbody>
</table>

6 CONSTRUCTION EFFECTS

Roadway Closures, Restrictions, and Detours

1. How would restrictions to SR 99 compare?
2. How would traffic be restricted on other roadways during construction?

Traffic Effects During Construction

<table>
<thead>
<tr>
<th>Page</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>How would travel patterns on SR 99, I-5, and city streets be affected during construction?</td>
</tr>
<tr>
<td>4</td>
<td>How would SR 99 traffic be affected by lane restrictions?</td>
</tr>
<tr>
<td>5</td>
<td>How would construction affect SR 99 traffic?</td>
</tr>
<tr>
<td>6</td>
<td>How would construction effects compare to traffic on local streets?</td>
</tr>
<tr>
<td>7</td>
<td>How would effects to transit compare?</td>
</tr>
<tr>
<td>8</td>
<td>How would construction affect freight?</td>
</tr>
<tr>
<td>9</td>
<td>Would ferry traffic be affected?</td>
</tr>
<tr>
<td>10</td>
<td>How would event traffic be affected during construction?</td>
</tr>
<tr>
<td>11</td>
<td>How would bicyclists and pedestrians be affected during construction?</td>
</tr>
</tbody>
</table>

Other Temporary Construction Effects

<table>
<thead>
<tr>
<th>Page</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>How would soil and contaminated materials be handled and removed during construction?</td>
</tr>
<tr>
<td>13</td>
<td>Would settlement during construction affect surrounding areas?</td>
</tr>
<tr>
<td>14</td>
<td>How would construction affect noise levels?</td>
</tr>
<tr>
<td>15</td>
<td>Would vibration during construction affect surrounding areas?</td>
</tr>
<tr>
<td>16</td>
<td>How would views be affected during construction?</td>
</tr>
<tr>
<td>17</td>
<td>Would temporary construction easements or relocations be needed during construction?</td>
</tr>
<tr>
<td>18</td>
<td>How would the local and regional economy be affected during construction?</td>
</tr>
<tr>
<td>19</td>
<td>How would historic properties be affected during construction?</td>
</tr>
<tr>
<td>20</td>
<td>Would construction affect archaeological resources?</td>
</tr>
<tr>
<td>21</td>
<td>How would parks, recreation, and open space be affected during construction?</td>
</tr>
<tr>
<td>22</td>
<td>How would neighborhoods be affected during construction?</td>
</tr>
<tr>
<td>23</td>
<td>How would community and social services be affected during construction?</td>
</tr>
<tr>
<td>24</td>
<td>How would low-income and minority populations be affected during construction?</td>
</tr>
<tr>
<td>25</td>
<td>How would public services and utilities be affected during construction?</td>
</tr>
<tr>
<td>26</td>
<td>How would air quality be affected during construction?</td>
</tr>
<tr>
<td>27</td>
<td>How would greenhouse gas emissions be affected during construction?</td>
</tr>
<tr>
<td>28</td>
<td>How much energy would be needed to construct the project?</td>
</tr>
<tr>
<td>29</td>
<td>How would water resources be affected during construction?</td>
</tr>
<tr>
<td>30</td>
<td>Would fish, aquatic, and wildlife species and habitat be affected during construction?</td>
</tr>
<tr>
<td>31</td>
<td>Would construction have any indirect effects?</td>
</tr>
<tr>
<td>32</td>
<td>Would construction have any cumulative effects?</td>
</tr>
</tbody>
</table>
CONTENTS (continued)

7 CUMULATIVE EFFECTS

What is in Chapter 7?

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Effects Overview</td>
<td>205</td>
</tr>
<tr>
<td>1. What are cumulative effects, and why do we study them?</td>
<td>205</td>
</tr>
<tr>
<td>2. How does WSDOT evaluate cumulative effects?</td>
<td>205</td>
</tr>
<tr>
<td>3. How did WSDOT evaluate the cumulative effects for this project?</td>
<td>205</td>
</tr>
<tr>
<td>4. What are the results of the cumulative effects analysis?</td>
<td>207</td>
</tr>
<tr>
<td>5. What is the cumulative effect on the built environment?</td>
<td>207</td>
</tr>
<tr>
<td>Land Use</td>
<td>6. What cumulative effects are anticipated?</td>
</tr>
<tr>
<td>Visual Quality</td>
<td>7. What cumulative effects are anticipated?</td>
</tr>
<tr>
<td>Transportation</td>
<td>8. What cumulative effects are anticipated?</td>
</tr>
<tr>
<td>Noise</td>
<td>9. What cumulative effects are anticipated?</td>
</tr>
<tr>
<td>Economics</td>
<td>10. What cumulative effects are anticipated?</td>
</tr>
<tr>
<td>Social and Neighborhood Resources</td>
<td>11. What cumulative effects are anticipated?</td>
</tr>
<tr>
<td>Historic, Cultural, and Archaeological Resources</td>
<td>12. What cumulative effects are anticipated?</td>
</tr>
<tr>
<td>Water Quality</td>
<td>13. What is the cumulative effect on the natural environment?</td>
</tr>
<tr>
<td>Earth and Groundwater</td>
<td>14. What cumulative effects are anticipated?</td>
</tr>
<tr>
<td>Climate Change</td>
<td>15. What cumulative effects are anticipated?</td>
</tr>
<tr>
<td>Mitigation</td>
<td>16. How did the project consider future conditions related to climate change?</td>
</tr>
<tr>
<td>17. How could the cumulative effect on the resources be mitigated?</td>
<td>212</td>
</tr>
</tbody>
</table>

8 MITIGATION

What is in Chapter 8?

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigation Overview</td>
<td>215</td>
</tr>
<tr>
<td>Mitigation for Permanent Effects</td>
<td>1. What mitigation is proposed for permanent transportation effects?</td>
</tr>
<tr>
<td>2. What mitigation is proposed for permanent effects on views?</td>
<td>216</td>
</tr>
<tr>
<td>3. What mitigation is proposed for permanent effects on historic resources?</td>
<td>216</td>
</tr>
<tr>
<td>4. What mitigation is proposed for permanent effects on neighborhoods and community services or resources?</td>
<td>217</td>
</tr>
<tr>
<td>5. What mitigation is proposed for permanent effects on minorities and low-income people?</td>
<td>217</td>
</tr>
<tr>
<td>6. What is proposed to minimize long-term energy consumption?</td>
<td>218</td>
</tr>
<tr>
<td>7. What mitigation is proposed for permanent effects on fish, aquatic, and wildlife species and habitat?</td>
<td>218</td>
</tr>
<tr>
<td>8. What mitigation is proposed for permanent effects on soils and groundwater?</td>
<td>219</td>
</tr>
<tr>
<td>Mitigation for Construction Effects</td>
<td>9. What mitigation is proposed for transportation effects during construction?</td>
</tr>
<tr>
<td>10. What can be done to minimize traffic effects when multiple projects are being constructed?</td>
<td>220</td>
</tr>
<tr>
<td>11. What mitigation is proposed for noise effects during construction?</td>
<td>220</td>
</tr>
<tr>
<td>12. What mitigation is proposed for vibration effects during construction?</td>
<td>221</td>
</tr>
<tr>
<td>13. What mitigation is proposed for effects on views during construction?</td>
<td>221</td>
</tr>
<tr>
<td>14. What mitigation is proposed for land use effects during construction?</td>
<td>222</td>
</tr>
<tr>
<td>15. What mitigation is proposed for economic effects during construction?</td>
<td>222</td>
</tr>
<tr>
<td>16. What mitigation is proposed for parking effects during construction?</td>
<td>223</td>
</tr>
<tr>
<td>17. What mitigation is proposed for effects on historic resources during construction?</td>
<td>223</td>
</tr>
</tbody>
</table>

9 EIS COMMENTS AND RESPONSES

What is in Chapter 9?

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. How many comments were received?</td>
<td>235</td>
</tr>
</tbody>
</table>
CONTENTS (continued)

FINAL SECTION 4(f) EVALUATION

Background

1. What is Section 4(f)?
2. What is a "Section 4(f) resource"?
3. What is a "use" of a Section 4(f) resource?
4. How can FHWA approve an alternative that uses a Section 4(f) resource?
5. What factors must FHWA consider when determining whether an avoidance alternative is "feasible and prudent"?
6. What factors must FHWA consider when determining which alternative causes "least overall harm"?
7. What does Section 106 consultation involve, and how does it relate to this Section 4(f) evaluation?

Section 4(f) Evaluation

1. Agencies Involved in Developing This Section 4(f) Evaluation
2. Purpose and Need of the Proposed Action
3. Alternatives Considered
4. Section 4(f) Resources
5. Bored Tunnel Alternative
6. Effects of the Cut-and-Cover Tunnel and Elevated Structure Alternatives on Section 4(f) Properties
7. Other Alternatives Considered to Avoid and Minimize Harm
8. Conclusion on Search for Feasible and Prudent Avoidance Alternatives
9. Identifying a Least Harm Alternative
10. Conclusions

What happened to the comments received on the 2004 Draft and 2006 Supplemental Draft EIS?

What did the lead agencies learn from the comments received on the 2010 Supplemental Draft EIS, and how did they respond?

EVALUATION

BACKGROUND

1. What is Section 4(f)?
2. What is a "Section 4(f) resource"?
3. What is a "use" of a Section 4(f) resource?
4. How can FHWA approve an alternative that uses a Section 4(f) resource?
5. What factors must FHWA consider when determining whether an avoidance alternative is "feasible and prudent"?
6. What factors must FHWA consider when determining which alternative causes "least overall harm"?
7. What does Section 106 consultation involve, and how does it relate to this Section 4(f) evaluation?

SECTION 4(f) EVALUATION

1. Agencies Involved in Developing This Section 4(f) Evaluation
2. Purpose and Need of the Proposed Action
3. Alternatives Considered
4. Section 4(f) Resources
5. Bored Tunnel Alternative
6. Effects of the Cut-and-Cover Tunnel and Elevated Structure Alternatives on Section 4(f) Properties
7. Other Alternatives Considered to Avoid and Minimize Harm
8. Conclusion on Search for Feasible and Prudent Avoidance Alternatives
9. Identifying a Least Harm Alternative
10. Conclusions

REFERENCE PAGES

ACKNOWLEDGMENTS & ABBREVIATIONS

INDEX

REFERENCES

LIST OF PREPARERS

DISTRIBUTION LIST

TECHNICAL INDEX

LETTERS

LIST OF EXHIBITS

Exhibit S-1	Project Limits	1
Exhibit S-2	Proposed Construction Staging Areas	2
Exhibit S-3	Project Timeline	3
Exhibit S-4	Alaskan Way Viaduct & Seawall Replacement Program Elements	4
Exhibit S-5	Other Projects Included in the Alaskan Way Viaduct & Seawall Replacement Program	4
Exhibit S-6	Bored Tunnel Alternative	5
Exhibit S-7	Visual Simulation Inside the Bored Tunnel – Northbound	6
Exhibit S-8	Cut-and-Cover Tunnel Alternative	7
Exhibit S-9	Elevated Structure Alternative	8
Exhibit S-10	Build Alternatives Costs	8
Exhibit S-11	SR 99 Access to and from Northeast Seattle	9
Exhibit S-12	Screenline Locations	10
Exhibit S-13	2030 Daily Person Throughput at Screenlines	9
Exhibit S-14	Comparison of 2030 SR 99 Volumes	13
Exhibit S-15	2030 Daily Vehicle Volumes in 2030	11
Exhibit S-16	2030 Congested Intersections – PM Peak Hour	15
Exhibit S-17	Congested Intersections at the AM Peak Hour	11
Exhibit S-18	Congested Intersections during the PM Peak Hour	11
Exhibit S-19	2030 Daily Vehicle Volumes for Screenlines North of Seneca Street	11
Exhibit S-20	PM Peak Hour Travel Times for the General Purpose Lanes on Second and Fourth Avenues	11
Exhibit S-21	Daily Vehicle Volumes on Alaskan Way in 2030	12
Exhibit S-22	2030 Travel Time Comparison	16
Exhibit S-23	2030 Transit Travel Time Comparison	17
Exhibit S-24	Range of Noise Effects Compared to 2015 Existing Viaduct	18
Exhibit S-25	Visual Simulations Looking North at S. Royal Brougham Way	19
Exhibit S-26	Visual Simulations Looking North on Alaskan Way at Union Street	20
Exhibit S-27	Summary of Surface Parcels Acquired for the Alternatives	18
Final Section 4(f) Evaluation
Exhibit 4(f)-1 Section 4(f) Resources Subject to Use by the Preferred Alternative 238
Exhibit 4(f)-2 Resources Subject to Use Under Section 4(f) 239
Exhibit 4(f)-3 Section 4(f) Resources With Potential Minor Effects but not Subject to Use by the Preferred Alternative (map) 254
Exhibit 4(f)-4 Section 4(f) Resources With Potential Minor Effects but not Subject to Use by the Preferred Alternative (table) 255
Exhibit 4(f)-5 List of Section 4(f) Resources Evaluated for Potential Use 259
IN MEMORIAM…

This document is dedicated to the memories of Maureen Sullivan (WSDOT), Roland Benito (WSDOT), and James Leonard (FHWA). Their legacy of dedication and contributions to the delivery of the Alaskan Way Viaduct and Seawall Replacement Program is immeasurable. We will carry forward their spirit and commitment towards delivery of this public safety project in their memories.